romka1210
?>

В 3 задании соответственно в точках М1 , М2 и В

Алгебра

Ответы

andrewshilin1334

По формуле вс угла:

4\sin x-16\cos x= \sqrt{4^2+4^4}\sin(x-\arcsin \frac{16}{ \sqrt{4^2+4^4} } )=4 \sqrt{17} \sin(x-\arcsin\frac{4}{\sqrt{17} })4sinx−16cosx=

4

2

+4

4

sin(x−arcsin

4

2

+4

4

16

)=4

17

sin(x−arcsin

17

4

)

Поскольку синус принимает свои значения - [-1;1], то

\begin{lgathered}-1 \leq \sin(x-\arcsin\frac{4}{\sqrt{17} } )\leq 1\\ \\ -4 \sqrt{17} \leq \sin(x-\arcsin\frac{4}{\sqrt{17} }) \leq 4 \sqrt{17}\end{lgathered}

−1≤sin(x−arcsin

17

4

)≤1

−4

17

≤sin(x−arcsin

17

4

)≤4

17

Наибольшее - 4 \sqrt{17}4

17

и наименьшее - (-4 \sqrt{17} )(−4

17

)

muraveiynik
(1-х)(х-2)<0
сначала ищем иксы
(1-х)(х-2)=0
1-х=0, х₁=1
х-2=0, х₂=2
отметим их на координатной прямой, получим 3 промежутка:
(-∞; 1); (1;2); (2; +∞)

₀₀>х
             1               2
для того, чтобы узнать знаки в промежутках нужно в уравнение подставить числа из этих промежутков, например:
(2;+∞): (1-3)(3-2) = -2*1 = -2 < 0 (ставим -)
(1;2): (1-1,5)(1,5-2) = -0,5*(-0,5) = 0,25 > 0 (cтавим +)
(-∞; 1): (1-0)(0-2) = 1*(-2) = -2 < 0 (ставим -)

         -                 +                -
₀₀>x
                  1                2
возвращаемся к неравенству, у нас должно быть < 0, а это два крайних промежутка
ответ: (-∞; 1)∪(2; +∞)

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

В 3 задании соответственно в точках М1 , М2 и В
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

milkline-nn
ninaandreeva3179
phiskill559
Alsergus7811
Ofelya1308
tarasovs
mir5552
hamelleon43
zigrin
Belik-elena20111
mg4954531175
lazu8375
Eduardovich
stolle16
Алексей424