Правильная четырёхугольная пирамида - это пирамида, основание которой - квадрат. Площадь боковой поверхности любой правильной пирамиды вычисляется по формуле:
, где a - сторона основания, n - число сторон основания, h - высота пирамиды.
В нашем случае , так как основание квадрат.
cм²
MNA888
21.10.2022
ответ: во вложении Объяснение:
Vitalevna1186
21.10.2022
Простейшими тригонометрическими неравенствами называются неравенства вида
sinx\vee a,
cosx\vee a,
tgx\vee a,
ctgx\vee a,
где \vee – один из знаков <,\;>,\;\leq,\;\geq, a\in R.
Вы должны прежде, конечно, хорошо ориентироваться в тригонометрическом круге и уметь решать простейшие тригонометрические уравнения (часть I, часть II).
круг тригонометрический
Кстати, умение решать тригонометрические неравенства может пригодиться, например, в заданиях №11 ЕГЭ по математике.
Сначала мы рассмотрим простейшие тригонометрические неравенства с синусом и косинусом. Во второй части статьи – с тангенсом, котангенсом.
Пример 1. Решить неравенство: cosx<\frac{1}{2}.
Решение:
Отмечаем на оси косинусов \frac{1}{2}.
Все значения cosx, меньшие \frac{1}{2}, – левее точки \frac{1}{2} на оси косинусов.
87
Отмечаем все точки (дугу, точнее – серию дуг) тригонометрического круга, косинус которых будет меньше \frac{1}{2}.
ен
Полученную дугу мы проходим против часовой стрелки (!), то есть от точки \frac{\pi}{3} до \frac{5\pi}{3}.
Обратите внимание, многие, назвав первую точку \frac{\pi}{3}, вместо второй точки \frac{5\pi}{3} указывают точку -\frac{\pi}{3}, что неверно!
Становится видно, что неравенству удовлетворяют следующие значения x:
\frac{\pi}{3}+2\pi n Следите за тем, чтобы «правая/вторая точка» была бы больше «левой/первой».
Не забываем «накидывать» счетчик 2\pi n,\;n\in Z.
Вот так выглядит графическое решение неравенства не на тригонометрическом круге, а в прямоугольной системе координат:
тригонометрические неравенства
Пример 2. Решить неравенство: cosx\geq -\frac{\sqrt2}{2}.
Решение:
Отмечаем на оси косинусов -\frac{\sqrt2}{2}.
Все значения cosx, большие или равные -\frac{\sqrt2}{2} – правее точки -\frac{\sqrt2}{2}, включая саму точку.
Тогда выделенные красной дугой аргументы x отвечают тому условию, что cosx\geq -\frac{\sqrt2}{2}.
г-\frac{3\pi}{4}+2\pi n\leq x\leq \frac{3\pi}{4}+2\pi n,\; n\in Z.
Пример 3. Решить неравенство: sinx\geq -\frac{\sqrt3}{2}.
Решение:
Отмечаем на оси синусов -\frac{\sqrt3}{2}.
Все значения sinx, большие или равные -\frac{\sqrt3}{2}, – выше точки -\frac{\sqrt3}{2}, включая саму точку.
67
«Транслируем» выделенные точки на тригонометрический круг:
6 -\frac{\pi}{3}+2\pi n \leq x\leq \frac{4\pi}{3}+2\pi n,\;n\in Z
Пример 4. Решить неравенство: sinx<1.
Решение:
Кратко:
л
\frac{\pi}{2}+2\pi n или все x, кроме \frac{\pi}{2}+2\pi n,\;n\in Z.
Пример 5. Решить неравенство: sinx\geq 1.
Решение:
Неравенство sinx\geq 1 равносильно уравнению sinx=1, так как область значений функции y=sinx – [-1;1].
78н
x=\frac{\pi}{2}+2\pi n,\;n\in Z.
Пример 6. Решить неравенство: sinx<\frac{1}{3}.
Решение:
Действия – аналогичны применяемым в примерах выше. Но дело мы имеем не с табличным значением синуса.
Здесь, конечно, нужно знать определение арксинуса.
89
\pi -arcsin\frac{1}{3}+2\pi n Если не очень понятно, загляните сюда –>+ показать
alenkadon6
21.10.2022
Если я все верно понял и разобрал твой пример, то: №1 ((3x-4/x+1 - 2x-5/x+1 + x/x+1 )/(x/x^2-1)) = Делю пополам уравнения и по действиям, думаю, что вы поймете. Начну с конца. (x/x^2-1) = ((x+1)(x-1)/x) \\ Умножим числитель на величину, обратную знаменателю x/x^2-1 ((3x-4-(2x-5))/x+1) + x/x+1)) = (1+x/x+1) \\ Поделили на две части уравнения, и пришло время - Объединить пример. (1+x/x+1) * ((x+1)(x-1))/x) \\ В данном уравнении, первую дробь Умножаем на знаменатель и получаем вывод: (1(x+1)/1(x+1) + x/x+1) ((2x+1)(x+1) * ((x+1)(x-1)/x) =((2x+1)/1)((x-1)/x) =(2x+1)(x-1)/x ответ на первый пример: (2x+1)(x-1)/x
№2
Не особо понял мысль твоего уравнения, в следующий раз, будьте добры, отправлять фотографию примера, иногда бывает, что за готовое решение ставят жалобу и человек, который решал дают страйк!
(a - a^2-3/a-2): 3-2a/4-4a+a^2 = Так же как и в первом случае, начну с конца! Переворачиваем дробь : ((4-4a+a^2)/3-2a) = ((2-a)^2)/(3-2a) \\ Получили по формуле квадратного уравнения! Вернемся к первой части, домножаем уравнение на (a-2) (a(a-2)/(a-2) - (a^2-3)/(a-2)) * (((2-a)^2)/(3-2a)); =>Скомбинируем уравнение и получаем: ((-2a+3/a-2))/((2-a)^2/(3-2a)) = Упростим числитель и его члены => )(2-a)^2/(a-2) => (a-2)(a-2)/(a-2)*1 = > a-2 ответ: a-2
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Найти площадь боковой поверхности правильной четырёхугольной пирамиды, сторона основания которой равна 16 и высота равна 6
320 см²
Объяснение:
Правильная четырёхугольная пирамида - это пирамида, основание которой - квадрат. Площадь боковой поверхности любой правильной пирамиды вычисляется по формуле:
, где a - сторона основания, n - число сторон основания, h - высота пирамиды.
В нашем случае , так как основание квадрат.
cм²