Цена 5 ручек 85 рублей
Цена 3 карандашей 3Х рублей
Объяснение:
5*17+85
вроде так
Объяснение:
Систем нету, поэтому решу только две задачи.
1. Купюры на 500 руб, всего 22 штуки.
{ 50x + 10y = 500
{ x + y = 22
Делим 1 уравнение на 10
{ 5x + y = 50
{ x + y = 22
Вычитаем из 1 уравнения 2 уравнение
5x + y - x - y = 50 - 22
4x = 28
x = 7 купюр по 50 рублей.
y = 22 - x = 22 - 7 = 15 купюр по 10 рублей.
2. Прямая y = kx + b; A(5; 0); B(-2; 21)
Подставляем координаты вместо х и у.
{ 0 = k*5 + b
{ 21 = k*(-2) + b
Из 1 уравнения вычитаем 2 уравнение
0 - 21 = 5k + b - (-2)k - b
-21 = 7k
k = -21/7 = -3
b = -5k = -5*(-3) = 15
Прямая y = -3x + 15
Пусть вся дорога 1 (единица), тогда х время, за которое первая бригада может отремонтировать дорогу, а у время второй бригады. Совместная работа двух бригад 6 ч. Если первая бригада отремонтирует 3/5 дороги, то время затратит (3/5)÷(1/х)=3х/5 ; если вторая бригада отремонтирует оставшуюся часть: 1-3/5=2/5 дороги. то время затратит (2/5)÷(1/у)=2у/5 , и времени они затратят 12 часов. Составим два уравнения:
1/х+1/у=1/6
3х/5+2у/5=12
Выделим х во втором уравнении:
3х/5+2у/5=12
15х+10у=300
3х+2у=60
х=(60-2у)/3
Подставим значение х в первое уравнение:
3/(60-3у)+1/у=1/6
18у+360-12у=60у-2у²
2у²-54у+360=0
у²-27у+180=0
D=9
у₁=12 часов вторая бригада может отремонтировать дорогу самостоятельно.
х₁=(60-2*12)/3=36/3=12 часов первая бригада может отремонтировать дорогу самостоятельно.
у₂=15 часов вторая бригада может отремонтировать дорогу самостоятельно.
х₂=(60-2*15)/3=30/3=10 часов первая бригада может отремонтировать дорогу самостоятельно.
ответ: Или первая за 12 часов и вторая за 12 часов; Или первая за 10 часов и вторая за 15 часов.
Поделитесь своими знаниями, ответьте на вопрос:
Цена одной шариковой ручки 17 рублей, а цена карандаша x рублей. Сколько рублей стоят 5 ручек и 3 карандаша?
5 х 17= 85 - 5 ручек; 3 умножить на х =3х - стоимость карандаша
Объяснение: