Дана функция у = (x³ -6x² + 32)/(4 - x). Если х не равен 4, то числитель можно разделить на знаменатель и получим квадратичную функцию у = - x² + 2x + 8. График её - парабола ветвями вниз. Заданное условие выполняется, когда прямая y = а является касательной к графику в вершине параболы. Хо = -в/2а = -2/(2*(-1)) = 1. Отсюда имеем один из ответов: а = у(х=1) = -1+2+8 = 9. Так как заданная функция не существует в точке х = 4, то прямая у = 0 пересекает график только в точке х = -2. Второй ответ: а = 0.
takerra
25.12.2022
Какое наименьшее значение и при каком значении переменной принимает выражение х²+14х-16?
при х=-14/2 x=-7 y (-7)=(-7)²+14(-7)-16=49-98-16=-65
или рассмотрим функцию y=х²+14х-16=(x+7)²-65, графиком этой функции является парабола, ветки параболы направлены вверх, (коэффициент при х² равен 1>0), вершина параболы - точка с координатами х0=-7, у0=-65, в вершине функция y=х²+14х-16 принимает наименьшее значение.
Таким образом, наименьшее значение выражение х²+14х-16 принимает при х0=-7 , и оно равно у0=-65.
x^2-9x-2x+18=0 X^2-11x+18=0
Объяснение: