Решение системы уравнений (-1; 2)
Объяснение:
Решить систему уравнений:
(2х+7у)/4 + (3х-2у)/3 = 2/3
(3х+2у)/2 - (4х-6у)/7 = 39/14
Умножить первое уравнение на 12, второе на 14, чтобы избавиться от дроби:
3(2х+7у) + 4(3х-2у) = 4*2
7(3х+2у) - 2(4х-6у) = 39
Раскрыть скобки:
6х+21у+12х-8у=8
21х+14у-8х+12у=39
Привести подобные члены:
18х+13у=8
13х+26у=39
Умножить первое уравнение на -2, чтобы решить систему методом сложения.
Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, чтобы коэффициенты при неизвестном каком-то были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают уравнения, можно умножать обе части уравнения на одно и то же число, делить.
-36х-26у= -16
13х+26у=39
Складываем уравнения:
-36х+13х-26у+26у= -16+39
-23х=23
х=23/-23
х= -1
Теперь подставляем значение х в любое из двух уравнений системы и вычисляем у:
13х+26у=39
26у=39-13х
26у=39-13*(-1)
26у=39+13
26у=52
у=52/26
у=2
Решение системы уравнений (-1; 2)
Поделитесь своими знаниями, ответьте на вопрос:
Каждое ребро правильной треугольной призмы равно 3.Через сторону основания и середину оси(ось-отрезок, соединяющий центры оснований) проведена плоскость. Найдите площадь сечения призмы этой плоскостью.В ответ укажите число, умножение на корень из 3.
Потом находишь общий знаменатель:(х+1)(х+2)(х+4)(х-1).
к первой дроби дополнительный множитель:(х-1)(х+4)
ко второй:(х+1)(х+2)
к единице все скобки
получается:6х квадрат+24х-6х-24+8х квадрат+16х+8х+16-х в 4-ой степени+4х в кубе+х в кубе-4х квадат+2х в кубе-8х квадрат-2х квадарт+8х+х в кубе-4х квадарт-х квадарт+4х+2х квадрат-8х-2х+8
приводим подобные слагаемые:-х в 4-ой степени +8х в кубе-7х квадрат +44х/(х+1)(х+2)(х-1)(х+4)
теперь умножаем на (-1) и меняем знаки на противоположные (в числителе)
затем система, числитель равен нулю, а знаменатель не равен нулю