Avdeeva Yelizaveta
?>

Найти промежутки убывания функции y= 3x+x^2 / x-1 . В ответе записать положительную абсциссу середины одного из промежутков убывания хелп

Алгебра

Ответы

Immortal3331

Симплекс метод - это метод последовательного перехода от одного базисного решения (вершины многогранника решений) системы ограничений задачи линейного программирования к другому базисному решению до тех пор, пока функция цели не примет оптимального значения (максимума или минимума).

Симплекс-метод является универсальным методом, которым можно решить любую задачу линейного программирования, в то время, как графический метод пригоден лишь для системы ограничений с двумя переменными.

Перед тем, как перейти к алгоритму симплекс метода, несколько определений.

Всякое неотрицательное решение системы ограничений называется допустимым решением.

Пусть имеется система m ограничений с n переменными (m < n).

Допустимым базисным решением является решение, содержащее m неотрицательных основных (базисных) переменных и n - m неосновных. (небазисных, или свободных) переменных. Неосновные переменные в базисном решении равны нулю, основные же переменные, как правило, отличны от нуля, то есть являются положительными числами.

Любые m переменных системы m линейных уравнений с n переменными называются основными, если определитель из коэффициентов при них отличен от нуля. Тогда остальные n - m переменных называются неосновными (или свободными).

Алгоритм симплекс метода

Шаг 1. Привести задачу линейного программирования к канонической форме. Для этого перенести свободные члены в правые части (если среди этих свободных членов окажутся отрицательные, то соответствующее уравнение или неравенство умножить на - 1) и в каждое ограничение ввести дополнительные переменные (со знаком "плюс", если в исходном неравенстве знак "меньше или равно", и со знаком "минус", если "больше или равно").

Шаг 2. Если в полученной системе m уравнений, то m переменных принять за основные, выразить основные переменные через неосновные и найти соответствующее базисное решение. Если найденное базисное решение окажется допустимым, перейти к допустимому базисному решению.

Шаг 3. Выразить функцию цели через неосновные переменные допустимого базисного решения. Если отыскивается максимум (минимум) линейной формы и в её выражении нет неосновных переменных с отрицательными (положительными) коэффициентами, то критерий оптимальности выполнен и полученное базисное решение является оптимальным - решение окончено. Если при нахождении максимума (минимума) линейной формы в её выражении имеется одна или несколько неосновных переменных с отрицательными (положительными) коэффициентами, перейти к новому базисному решению.

Шаг 4. Из неосновных переменных, входящих в линейную форму с отрицательными (положительными) коэффициентами, выбирают ту, которой соответствует наибольший (по модулю) коэффициент, и переводят её в основные. Переход к шагу 2.

Важные условия

Если допустимое базисное решение даёт оптимум линейной формы (критерий оптимальности выполнен), а в выражении линейной формы через неосновные переменные отсутствует хотя бы одна из них, то полученное оптимальное решение - не единственное.

Если в выражении линейной формы имеется неосновная переменная с отрицательным коэффициентом в случае её максимизации (с положительным - в случае минимизации), а во все уравнения системы ограничений этого шага указанная переменная входит также с отрицательными коэффициентами или отсутствует, то линейная форма не ограничена при данной системе ограничений. В этом случае её максимальное (минимальное) значение записывают в виде .

На сайте есть Онлайн калькулятор решения задач линейного программирования симплекс-методом.

nyuraborova89
1) y=-2x²-3x-3
Функция определена на всей числовой прямой
Найдём производную и приравняем её к 0:
y'=(-2x²-3x-3)'=-4x-3
-4x-3=0
-4x=3
x=-3/4
Нашли критическую точку, теперь надо определить это точка максимума или минимума функции. На числовой прямой откладываем точку -3/4 и находим значения производной функции перед этой точкой, например в точке -2:
f'(-2)=-4*(-2)-3=5
Значит производная положительная на интервале (-∞;-3/4)
Выбираем точку 0:
f'(0)=-4*0-3=-3
Значит производная отрицательная на интервале (-3/4;∞)
То есть производная меняет знак с плюса на минус значит функция достигает максимума в данной точке: x=-3/4 точка максимума.
-2*(-3/4)²-3(-3\4)-3=-15/8

2) y=x²-4x-21
y'=(x²-4x-21)'=2x-4
2x-4=0
2x=4
x=2
Подставляем 0 и находим значение производной в этой точке
f'(0)=2*0-4=-4  f'(x)<0
Подставляем 3
f'(3)=2*3-4=2  f'(x)>0
При переходе через точку 2 производная меняет знак с "-" на "+" значит функция в этой точке достигает минимума.
2²-4*2-21=4-8-21=-25

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найти промежутки убывания функции y= 3x+x^2 / x-1 . В ответе записать положительную абсциссу середины одного из промежутков убывания хелп
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Moroshkina-Aristova2011
ирина_Андреевич1634
tsarkovim
ilysozkn27
vetrov1
Pavlov447
thecoffeeowl
kireevatatiana
Lapushkin1988
kot271104
razumeiko0790
topsalon
ilplakhotin8734
АлександровнаВладлен243
plio67380