x-8)(p+x)≤0, p∈N,
x^2+(p-8)x-8p≤0,
a=1>0,
x^2+(p-8)x-8p=0,
D=(p-8)^2-4*(-8p)=(p+8)^2>0,
x_1=(-(p-8)-(p+8))/2=-p,
x_2=(-(p-8)+(p+8))/2=8,
-p≤x≤8, x∈[-p;8];
a) x_2=x_1+9,
-p+9=8,
p=1,
-1≤x≤8, x∈[-1;8]; /-1, 0, 1, 2, 3, 4, 5, 6, 7, 8
б) -3<x_1≤-2,
-3<-p≤-2,
2≤p<3,
p=2,
-2≤x≤8, x∈[-2;8]; /-2, -1
в) -4<x_1≤-3,
-4<-p≤-3,
3≤p<4,
p=3,
-3≤x≤8, x∈[-3;8]; /-3, -2, -1, 0
г) x_1>0,
-p>0,
p<0, p∉N
^ - возведение в степень, ^2 - в квадрате, ^3 - в кубе, ^(10) - в 10 степени
_ - нижний индекс, х_1 - х первое, х_2 - х второе
Поделитесь своими знаниями, ответьте на вопрос:
Определите промежутки монотонности функции:а) у = х^3 + 2x;б) у = 60 + 45х – 3х^2 - x^3;
Примем одну сторону как "х", другую как "у". Составляем систему уравнений (цифры с двоеточием заменить фигурной скобкой)
1: х - у = 14
2: х^2 + y^2 = 26^2
Получаем, что:
х = (14 + у)
(у^2 + 28y + 196) + y^2 = 676
Приводим подобные:
2y^2 + 28y - 480 = 0
Сокращаем на "2":
y^2 + 14y - 240 = 0
Далее решаем по теореме Виета для квадратных уравнений, либо через дискриминант (лично я предпочитаю второе):
a = 1, b = 14, c = -240
D = b^2 - 4ac
D = 14*14 + 4*240 = 1156
√D = 34
у1 = -b+√D/2a = -14+34/2 = 10 см.
y2 = -b-√D/2a = -14-34/2 = -24 см (таких сторон прямоугольников не существует в природе, вычеркиваем =)).
Подставляем в первое уравнение х = (14 + у) и... о чудо!:
14+10 = 24 см.
ответ: Большая сторона данного прямоугольника равна 24 сантиметрам.