Чтобы упростить выражение (а + 5)(а - 2) + (а - 4)(а + 6) вспомним как умножить скобку на скобку.
Правило умножения скобки на скобку звучит так: чтобы умножить одну сумму на другую, надо каждое слагаемое первой суммы умножить на каждое слагаемое второй суммы и сложить полученные произведения.
(а + 5)(а - 2) + (а - 4)(а + 6) = a * a - 2 * a + 5 * a - 2 * 5 + a * a + 6 * a - 4 * a - 4 * 6 = a^2 - 2a + 5a - 10 + a^2 + 6a - 4a - 24.
Сгруппируем и приведем подобные слагаемые:
a^2 + a^2 - 2a + 5a + 6a - 4a - 10 - 24 = 2a^2 + 5a - 34.
ответ: 2a^2 + 5a - 34.
Объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
А)вычислите log(по основанию 5)135-log(по основанию 5)5, 4 б)log(по основанию 4)104-log(по основанию 4)6, 5 в)log(по основанию 6)144-log(по основанию 6)4
См. Объяснение.
Объяснение:
1) Чтобы раскрыть скобки, надо почленно умножить сомножитель который стоит перед скобкой, на каждое число или буквенное (буквенно-цифровое) выражение, которое стоит в скобках, не забывая при этом о знаках: минус на минус даёт плюс; плюс на минус даёт минус; плюс на плюс даёт плюс:
а · (-36+2с-у)= - 36а + 2ас - ау
Здесь мы сначала а умножили на -36 - получилось - 36а;
затем а умножили на 2с - получилось 2 ас,
затем а умножили на -у - получилось - ау.
2) Здесь всё сделали аналогично:
-1,5 · (2х - 4у) = -3х + 6у
3) А здесь после раскрытия скобок привели подобные:
3·(-4х+6) - (1-12х) = -12х +18 -1 + 12х = 17.
ПРИМЕЧАНИЕ.
В тетради надо записать только решения:
а · (-36+2с-у)= - 36а + 2ас - ау
-1,5 · (2х - 4у) = -3х + 6у
3·(-4х+6) - (1-12х) = -12х +18 -1 + 12х = 17.
Слова писать не надо, т.к. это - объяснение.