О. Карпов1691
?>

Прямые а и b пересекаются в точке М. АА1 = 3, МВ1=12.Найти: А1В1, МВ и ВВ

Алгебра

Ответы

muravlev2702
АВ так относится к А1В1 как М1А к МА, так же МВ найти можно.
Yuliya1693
1) f'(x) = 1/√((1-2x)/(1+2x)) * (1/2√(1-2x)/(1+2x))* ((1-2x)/(1+2x))'=
= 1/√((1-2x)/(1+2x)) * (1/2√(1-2x)/(1+2x))*(-2)(1+2x)-2(1-2x)/(1+2х)²=
= 1/√((1-2x)/(1+2x)) * (1/2√(1-2x)/(1+2x))* (-2-4х-2 +4х)/(1+2х)²=
=- 1/√((1-2x)/(1+2x)) * (1/2√(1-2x)/(1+2x))*4/(1+2х)²
2)у = √х*Cosx
y'=1/2√x*Cosx - √x*Sinx
3) f(x) = e^Sin4x
f'(x) = e^Sin4x * Cos4x*4
f'(0)= e^0*Cos0*4 = 1*1*4 = 4
4) f(x) (3x-4)*ln(3x-4)
f'(x) =3*ln(3x-4) + (3x-4)*3/(3x-4)= 3ln(3x-4) +3
5)f(x)=5^lnx
f'(x) = 5^lnx*1/x*ln5
6) f(x) = Ctg(2x + π/2) + (x-π²)/х = -tg2x + (x-π²)/х
f'(x) = -2/Cos²2x + (x - x + π²)/х² = -2/Cos² 2x + π²/x²
f'(π/12) = -2/Сos² π/6 + π²/π/12 = -3/2 + 12π
osnickyi
Попробую решить)
Итак, при х = -4,5 неравенство x^2+9x+a>0 - не верно.
Значит, при х = -4,5 верно следующее неравенство:
x^2+9x+a<0 ( поменяли знак неравенства на противоположный).
Подставим "-4,5" вместо икса и получим:
(-4,5)^2+9*(-4,5)+a<0
20,25-40,5+a<0
-20,25+a<0
a<20,25 - при этих "a" неравенство x^2+9x+a<0 - ВЕРНО,а неравенство x^2+9x+a>0 - НЕ ВЕРНО. И верным оно будет при a>20,25 ( поменяли знак неравенства на противоположный).
Проверим: подставим в формулу неравенства любое значение "a", которое больше 20,25( например,21). Далее,чтобы решить неравенство, нам надо найти корни уравнения x^2+9x+21=0, но т.к. дискриминант <0, то решением неравенства x^2+9x+21>0 будут все иксы.
ответ: a> 20,25.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Прямые а и b пересекаются в точке М. АА1 = 3, МВ1=12.Найти: А1В1, МВ и ВВ
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

skvik71672
plio67380
olofinskayae
nevori
v-shevlyakov7992
Сергеевич1396
Александрович Андреевна
modos201276
ragimovelshad
krisrespect2
Dmitrievich1871
vtarasyuk
juliajd
zakupka-marion
contact