burtsev3339
?>

Найдите значение y соответствующее значению x =0 для линейного уравнения 11x + 3x - 12 = 0​

Алгебра

Ответы

olga-bardeeva

X=0

11x+3y-12=0

11×0+3y-12=0

3y-12=0

3y=12

Y=12:3

Y=4

elenak26038778
1. у = (15-х) / 2
чтобы (у) было целым, (15-х) должно быть четным
15-х = 2(к+1) = 2к+2   и   15-х = -2к-2
х = 13-2к   и   17+2к, где к=0,1,2,3...
подставив эти выражения в выражение для (у), найдем и формулу для (у)...
(13-2к; к+1) и (17+2к; -к-1), где к=0,1,2,3...
2. х = (17-у) / 6
чтобы (х) было целым, (17-у) должно быть кратно 6
17-у = 6(к+1) = 6к+6   и   17-у = -6к-6
у = 11-6к   и   23+6к, где к=0,1,2,3...
подставив эти выражения в выражение для (х), найдем и формулу для (х)...
(к+1; 11-6к) и (-к-1; 23+6к), где к=0,1,2,3...
Zhamynchiev
Алгоритм поиска.
Ищем точки экстремума по условию y'=0. Определяем, является ли точка минимумом или максимумом по критерию изменения знака y' в данной точке: если знак y' изменяется с "+" на "-", то функция имеет максимум; если с "-" на "+" - минимум; если не изменяется - не является экстремумом.
Наибольшее значение на отрезке определяется как максимальное значение среди всех максимумов функции на отрезке и значений функции на концах отрезка.
Наименьшее значение функции определяется как минимальное значение среди всех минимумов на отрезке и значений функции на концах отрезка.

5.10
a) y = x³ - 3x²; отрезок [-1; 3]

y(-1) = (-1)³-3(-1)² = -1-3 = -4
y(3) = 3³-3*3² = 0

y'=3x²-6x=3x(x-2). Точки, подозрительные на экстремум: x=0; x=2. При x∈(0;2) y'<0 (функция y убывает (y↓)), при x∉(0;2) y'>0 (функция y возрастает (y↑)).
y(0) = 0
y(2) = 2³-3*2² = 8-12 = -4

Слева от точки (0;0) функция y возрастающая, справа - убывающая. Значит, точка (0;0) является локальным максимумом.
Слева от точки (2;-4) функция y убывающая, справа - возрастающая. Значит, точка (2;-4) является локальным минимумом.

Наибольшее значение функции y на отрезке [-1;3] равно max (y(-1),y(0),y(3)) = max (-4,0,0) = 0 (достигается в точках x=0 и x=3.
Наименьшее значение функции y на отрезке [-1;3] равно min (y(-1),y(2),y(3)) = min (-4,-4,0) = -4 (достигается в точках x=-1 и x=2.

В остальных решениях я буду писать кратко.

б) y = 2x³ - 6x² + 9; отрезок [-2; 2]

y(-2) = 2(-2)³ - 6(-2)² + 9 = -16 - 24 + 9 = -31
y(2) = 2(2)³ - 6(2)² + 9 = 16 - 24 + 9 = 1

y' = 2*3x² - 6*2x = 6x(x-2)
y'=0 ⇒ x∈{0;2}

x∈(0;2) ⇒ y'<0 ⇒ y↓
x∉[0;2] ⇒ y'>0 ⇒ y↑

y(0) = 9

(0;9): y слева ↑, справа ↓ ⇒ (0;9) - локальный максимум
(2;1): y слева ↓, справа ↑ ⇒ (2;1) - локальный минимум

max (y(-2),y(0)) = max (-31,9) = 9 ⇒ x=0
min (y(-2),y(2)) = min (-31,1) = -31 ⇒ x=-2

5.11
а) y = 2x³ - x²; отрезок [-1; 1]

y(-1) = 2(-1)³ - (-1)² = -2 - 1 = -3
y(1) = 2(1)³ - (1)² = 2 - 1 = 1

y' = 2*3x² - 2x = 2x(3x-1)
y'=0 ⇒ x∈{0;1/3}

x∈(0;1/3) ⇒ y'<0 ⇒ y↓
x∉[0;1/3] ⇒ y'>0 ⇒ y↑

y(0) = 0
y(1/3) = 2(1/3)³ - (1/3)² = 2/27 - 1/9 = -1/27

(0;0): слева y↑, справа y↓ ⇒ (0;0) - локальный максимум
(1/3;-1/27): слева н↓, справа y↑ ⇒ (1/3;-1/27) - локальный минимум

max (y(-1),y(0),y(1)) = max (-3,0,1) = 1 ⇒ x=1
min (y(-1),y(1/3),y(1)) = min (-3,-1/27,1) = -3 ⇒ x=-1

б) y = 2x³ + 6x² + 8; отрезок [-3; 2]

y(-3) = 2(-3)³ + 6(-3)² + 8 = -54 + 54 + 8 = 8
y(2) = 2(2)³ + 6(2)² + 8 = 16 + 24 + 8 = 48

y' = 2*3x² + 6*2x = 6x(x+2)
y'=0 ⇒ x∈{-2;0}

x∈(-2;0) ⇒ y'<0 ⇒ y↓
x∉[-2;0] ⇒ y'>0 ⇒ y↑

y(-2) = 2(-2)³ + 6(-2)² + 8 = -16 + 24 + 8 = 16
y(0) = 8

(-2;16): слева y↑, справа y↓ ⇒ (-2;16) - локальный максимум
(0;8): слева y↓, справа y↑ ⇒ (0;8) - локальный минимум

max (y(-3),y(-2),y(2)) = max (8,16,48) = 48 ⇒ x=2
min (y(-3),y(0),y(2)) = min (8,8,48) = 8 ⇒ x∈{-3;0}

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найдите значение y соответствующее значению x =0 для линейного уравнения 11x + 3x - 12 = 0​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Ирина-Макаркина253
Yuliya701
samogon-mozhaisk
Ingakazakova
kzhgutova
Валиахметова
julichca68
alekseysokolov29816
klimenokvapeshop1408
sashulyah3183
Nastyaches4
bryzgalovag
dyatchina63
GridnevaVNIGNI&quot;
mariokhab