an=3n-8меньше 0
3n-8меньше 0
nменьше 8/3
nменьше2 целых 2/3 следовательно
n=2
а2=3 х 2 - 8
а2 = -2 2
.найдите двенадцатый член дано а1=26; а2=23 следовательно d=-3(23-26)
а12= a1+(n-1) d
a12=26+11d
a12=26-33
a12=-7
3. какое число является членом арифметической пр.
a1=4 a4=85
d=(an-am)\n-m=(a4-a1)\4-1=(85-4)\3=27
a2=4+27=31
a3=31+27=58
4.вычислите an=15 -3n
здесь а1=15
по формуле s=(a1+an)\2 х n=(15+15-3 х19)\2 и всё умножить на 19= решаем и находим s19=256,5
как то так
1) Если дискриминант квадратного трёхчлена D>0, то квадратное уравнение ax²+bx+c=0 имеет два различных действительных корня.
В этом случае график квадр. трёхчлена - парабола, пересекает ось ОХ в двух точках х₁ и х₂, называемых корнями квадр.трёхчлена.
Причём, если а>0, то у параболы у=ах²+bx+c ветви направлены вверх.
Если же а<0, то ветви направлены вниз.
Соответственно, при решении квадратного неравенства ax²+bx+c>0 в случае D>0 , a>0 будем иметь ответ х∈(-∞,x₁)∪(x₂,+∞) ;
в случае D>0 , a<0 будем иметь х∈(х₁,х₂) , где х₁<х₂ - корни кв. трёхчлена.
См. рис. 1.
2) Если D=0, то квадр. уравнение имеет один корень (а точнее два действительных равных корня х₁=х₂) и квадратный трёхчлен будет представлять из себя полный квадрат: (х-х₁)²=0, х=х₁ .
График квадр. трёхчлена пересекает ось ОХ только в одной точке х=х₁.
При решении неравенства ax²+bx+c>0:
при D=0 , a>0 имеем х∈(-∞,х₁)∪(х₁,+∞) ;
при D=0 , a<0 решений неравенство не будет иметь, т.к. вся парабола расположена ниже оси ОХ, а ниже оси ОХ ординаты отрицательны (у<0),
то есть y=ax²+bx+c<0, либо ах²+bx+с=0 при х=х₁ .
В ответе надо записать: х∈∅ .
См. рис. 2.
3) Если D<0, то квадр. уравнение не имеет действительных корней.
График квадр. трёхчлена НЕ ПЕРЕСЕКАЕТ ось ОХ ни в одной точке,
при а>0 график расположен выше оси ОХ и все у(х)>0,
при а<0 график расположен ниже оси ОХ и все у(х)<0.
При решении квадр. неравенства ах²+bx+c>0:
при D<0 , a>0 имеем х∈(-∞,+∞) , так как какое бы значение "х" мы ни выбрали, соответствующее значение "у" будет положительным (у(х) >0).
при D<0 , a<0 имеем х∈∅, так как при любом значении "х" соответствующее значение "у" будет отрицательным (у(х)=ах²+bx+с<0) .
См. рис. 3.
Поделитесь своими знаниями, ответьте на вопрос:
Определи, чётная ли данная функция: f(x)=|x|+8 .
Да, ф-ия чётная
Объяснение: