Решение: х²+2√(х²+19)=44 2√(х²+19)=44-х² Чтобы избавиться от иррациональности возведём обе части уравнения в квадрат: 4(х²+19)=1936-88х²+х^4 4x^2+76=1936-88x^2+x^4 x^4-88x^2-4x^2+1936-76=0 x^4-92x^2+1860=0 Обозначим х^2=у, тогда уравнение примет вид: y^2-92y+1860=0 y1,2=92/2+-√(2116-1860)=46+-√256=46+-16 y1=46+16=62 y2=46-16=30 Подставим данные значения (у) в x^2=y x^2=62 x1,2=+-√62 x1=√62 x2=-√62
Руслан, прибавлять надо 3, никакого минуса там нет. Уравнение: (В+14)/(В+3)=(В+7)/В+37/88 Проблема в том, что оно не решается в целых числах. Если домножить на 88*B*(B+3), то получится 88*B*(B+14) = 88(B+3)(B+7) + 37*B*(B+3) 88*B^2 + 88*14*B = 88(B^2 + 10B + 21) + 37*B^2 + 37*3*B 88*B^2 + 88*14*B = 88*B^2 + 88*10*B + 21*88 + 37*B^2 + 111*B Вычитаем 88*B^2 слева и справа и умножаем числа 1232*B = 37*B^2 + 880*B + 111*B + 1848 37*B^2 - 241*B + 1848 = 0 А теперь находим дискриминант D = 241^2 - 4*37*1848 = 58081 - 273504 = -215423 < 0 Решений нет. Но даже если мы что-то напутали, и D = +215423, или D = 58081 + 273504 = 331585 Все равно это не квадрат целого числа, и B иррационально.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Из чисел −1;7√;8 и 38выбери числа, которые являются решением неравенства 3x>x+2:−1√73/88
х²+2√(х²+19)=44
2√(х²+19)=44-х²
Чтобы избавиться от иррациональности возведём обе части уравнения в квадрат:
4(х²+19)=1936-88х²+х^4
4x^2+76=1936-88x^2+x^4
x^4-88x^2-4x^2+1936-76=0
x^4-92x^2+1860=0
Обозначим х^2=у, тогда уравнение примет вид:
y^2-92y+1860=0
y1,2=92/2+-√(2116-1860)=46+-√256=46+-16
y1=46+16=62
y2=46-16=30
Подставим данные значения (у) в x^2=y
x^2=62
x1,2=+-√62
x1=√62
x2=-√62
x^2=30
x3,4=+-√30
x3=√30
x4=-√30
Произведение корней уравнения равно:
1. sqrt62 * -sqrt62=-62
2. sqrt30* - sqrt30=-30
(-62)*(-30)=1860
ответ: 1860