valeron7hair7
?>

Sin 2B – 2 sin ß./cos B-1​

Алгебра

Ответы

myliar21585356

С точки зpения банальной эpyдиции каждый индивидyyм, кpитически мотивиpyющий абстpакцию, не может игноpиpовать кpитеpии yтопического сyбьективизма, концептyально интеpпpетиpyя общепpинятые дефанизиpyющие поляpизатоpы, поэтомy консенсyс, достигнyтый диалектической матеpиальной классификацией всеобщих мотиваций в паpадогматических связях пpедикатов, pешает пpоблемy yсовеpшенствования фоpмиpyющих геотpансплантационных квазипyзлистатов всех кинетически коpеллиpyющих аспектов. Исходя из этого, мы пpишли к выводy

sorokinae

a=4

(2;1)

Объяснение:

Из условия известно, что первое уравнение этой системы обращается в верное равенство при x= 8 и y= −7; тогда, подставив эти значения переменных в первое уравнение, можно найти коэффициент a.

 

Получим:

ax+3y=11;8a+3⋅(−7)=11;8a=11−(−21);8a=32;a=4.

 

При таком значении коэффициента a данная система примет вид:

{4x+3y=115x+2y=12

 

Для решения этой системы уравнений  графически построим в одной координатной плоскости графики каждого из уравнений.

Графиком уравнения 4x+3y=11 является прямая.

 

Найдём две пары значений переменных x и y, удовлетворяющих этому уравнению.

 

x −1 2

y 5 1

 

Построим на координатной плоскости xОy прямую m, проходящую через эти две точки.

Графиком уравнения 5x+2y=12 также является прямая.

 

Найдём две пары значений переменных x и y, удовлетворяющих этому уравнению.

 

x 0 2

y 6 1

 

Построим на координатной плоскости xОy прямую n, проходящую через эти две точки.

 

Получим:

 

Прямые m и n пересекаются в точке A, координаты которой являются решением системы, т. е. A(2;1)

Объяснение:

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Sin 2B – 2 sin ß./cos B-1​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

partners
Rakitin
Arsen-araqelyan20164
dg9792794674
miss1380
Anatolevna1703
nane2924329
kuz-vlad21
magazin3000
tvmigunova551
vit010916
takerra
lovely138887
Elizavetaborisovna1992
mberberoglu17