nv6634
?>

B 1 , b 2 , b 3 , ...– геометрична прогресія. Знайти b 12 , якщо

Алгебра

Ответы

Татьяна1252

поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5

Объяснение:

поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5поставь себе 5

saryba

<!--c-->

Преобразим заданное уравнение:

x3+12x2−27x=a

С производной построим график функции y=x3+12x2−27x.

1. Введём обозначение f(x)=x3+12x2−27x.

Найдём область определения функции D(f)=(−∞;+∞).

2. Найдем стационарные и критические точки, точки экстремума и промежутки монотонности функции:

f′(x)=(x3+12x2−27x)′=3x2+24x−27.

Внутренние точки области определения функции, в которых производная функции равна нулю, назывём стационарными, а внутренние точки области определения функции, в которых функция непрерывна, но производная не существует, —критическими.

Производная существует всюду в области определения функции, значит, критических точек у функции нет. Стационарные точки найдем из соотношения f′(x)=0:

3x2+24x−27=0|÷3x2+8x−9=0D4=(b2)2−ac=822+9=25x1,2=−b2±D4−−√a=−82±25−−√1=−82±5x1=−82−5=−9x2=−82+5=1

Критические и стационарные точки делят реальную числовую прямую на интервалы с неизменным знаком производной. Чтобы определить знак производной, достаточно вычислить значение производной функции в какой-либо точке соответственного интервала.

Если производная функции в критической (стационарной) точке:

1) меняет знак с отрицательного на положительный, то это точка минимума;

2) меняет знак с положительного на отрицательный, то это точка максимума;

3) не меняет знак, то в этой точке нет экстремума.

Итак, определим точки экстремума:

При x<−9 имеем положительную производную (на этом промежутке функция возрастает); при  −9<x<1 имеем отрицательную производную (на этом промежутке функция убывает). Значит, x=−9 — точка максимума функции. При  −9<x<1 имеем отрицательную производную, при

Объяснение:

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

B 1 , b 2 , b 3 , ...– геометрична прогресія. Знайти b 12 , якщо
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

filippovev1
opal19575
TatyanaVladimirovich
Nikolai172
алексей_Цуканов
denspiel
MArat
ser7286
Ваган Шутова332
Решить уравнение: log9 x + 2log9 x = 5.
pokrov777krest
sgritsaev
Sergeevich-Drugov1513
astahova
yamal-toy
slastena69678