ответ:Произво́дная функции — понятие дифференциального исчисления, характеризующее скорость изменения функции в данной точке. Определяется как предел отношения приращения функции к приращению её аргумента при стремлении приращения аргумента к нулю, если такой предел существует. Функцию, имеющую конечную производную (в некоторой точке), называют дифференцируемой (в данной точке)
Объяснение:
vikapar2646
09.02.2021
Поскольку на двух факультетах уже по 25 человек, их из рассмотрения исключаем. На оставшиеся два надо распределить трех человек, следовательно будут сделаны два случайных распределения, а последний человек попадет на единственное свободное место. Имеются два места на Когтевран и одно - на Слизерин. Для Малфоя удачным будет исход, если первое распределение будет сделано на Когтевран, а вероятность такого исхода равна 2/3 (два места из трех возможных). На втором случайном распределении в этом случае будут по одному месту на каждый факультет, т.е. вероятность благоприятного для Малфоя исхода составит 1/2. Вероятность наступления обоих событий составит (2/3)*(1/2)=1/3
flerbuket332
09.02.2021
Очевидно, что проигрывать команде нельзя. Обе ничьи её тоже не устроят. Что остаётся? 1) Победить оба раза. 2) Победить только один раз, а вторую игру свести к ничьей. Вероятность победы равна 0,4. Вероятность победить оба раза равна 0,4 · 0,4 = 0,16. Вероятность ничьей равна 1 - 0,4 - 0,4 = 0,2. Чему же равна вероятность один раз сыграть вничью и один раз победить? 0,4 · 0,2? Нет, она равна 0,4 · 0,2 + 0,2 · 0,4. Дело в том, что можно победить в первой игре, а можно и во второй, это важно. Считаем теперь вероятность выйти в следующий круг: 0,16 + 0,08 + 0,08 = 0,32.
ответ:Произво́дная функции — понятие дифференциального исчисления, характеризующее скорость изменения функции в данной точке. Определяется как предел отношения приращения функции к приращению её аргумента при стремлении приращения аргумента к нулю, если такой предел существует. Функцию, имеющую конечную производную (в некоторой точке), называют дифференцируемой (в данной точке)
Объяснение: