juliaWinter
?>

0, 5<х<n; n<y<28 оценить а) ху; б) х+у​

Алгебра

Ответы

nord0764
В) (x-8)(x²-7x-8)=x³-8x²

заменим что x³-8x²=х²(x-8) поэтому
(x-8)(x²-7x-8)=х²(x-8)
одно решение x=8
сокращаем на  (x-8), остается
x²-7x-8=х²
-7x-8=0
x=-8/7=-1 \frac{1}{7}
ответ: х₁=8 и x_2=-1 \frac{1}{7}

г) (2х + 7)(х² + 12х - 30) - 5х² = 2х²(х + 1)
раскрываем скобки
(2х + 7)(х² + 12х - 30) - 5х²=2x³+24x²-60x+7x²+84x-210-5x²=2x³+26x²+24x-210
аналогично 2х²(х + 1)=2x³+2x²
получаем
2x³+26x²+24x-210=2x³+2x²
2x³+26x²+24x-210-2x³-2x²=0
24x²+24x-210=0
4x²+4x-35=0
D=4²+4*4*35=4²(1+35)=4²6²
√D=4*6=24
x₁=(-4-24)/8=-28/8=-7/2=-3,5
x₂=(-4+24)/8=20/8=5/2=2,5
ответ: x₁=-3,5 и x₂=2,5
blagorodovaanna375
2x²-4х+b=0
Это решается по дискриминанту 
вот формула D = b² - 4ac
где а - это то число где x²
где b - это то  число где x
где c - это то  число где нет x
Подставляем значения под формулу
D = 4² - 4 * 2 * b = 16 - 8b = 8b
дальше находим x1 и x2
по формуле 
х1= -b + квадратный корень из дискриминанта
                                  делим на 2а 
х2= -b - квадратный корень из дискриминанта
                                  делим на 2а 
Так же :
если дискриминант отрицательный то корней нет
если дискриминант равен нулю то корень только один
если дискриминант больше нуля то уравнение имеет два корня 

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

0, 5<х<n; n<y<28 оценить а) ху; б) х+у​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Alnkseevna
Sokolova-Shcherbakov
cosmetic89
fialkaflowers77
kononova_Pavel689
Daniil1945
Vkois56
Вакуленко
elenabarskova7145
Drugov_Vladimirovna
denis302007
bezzfamilny631
николаевич-Елена988
utkinslava
gdmaslo