(Первый вариант) Cумма цифр двузначного числа равна 7 значит єто число равно либо 70, либо 61, либо 52, либо 43, либо 34, либо 25, либо 16. Так как только для числа
70-7=63
61-16=45
52-25=26
43-34=9
25-52=-27
16-61=-45
Значит данное число равно 52
ответ: 52
Либо так.(Второй вариант) Пусть цифра десятков у данного числа равна х, тогда цифра единиц равна 7-х, а само число равно 10х+(7-х)=10х+7-х=9х+7, а если переставить получим число равное 10(7-х)+х=70-10х+х=70-9х. По условию задачи составляем уравнение:
9х+7-(70-9х)=27;
9х+7-70+9х=27;
18х-63=27;
18х=27+63;
18х=90;
х=90:18
х=5
7-х=7-5=2
а значит искомое число равно 52
ответ: 52
1.
216х² - 6у⁴ = 6 * (36х² - у⁴) = 6*(6х - у²)(6х + у²) (ответ Е),
2.
а)
S = 6а² = 6*(3х - 4)² = 6*(9х² - 24х + 16) = 54х² - 144х + 96,
б)
V = а³ = (3х - 4)³ = 27х³ - 108х² + 144х - 16,
3.
а)
4,3² - 2,58 + 0,3² = 4,3² - 2*4,3*0,3 + 0,3² = (4,3 - 0,3)² = 4² = 16,
б)
(44² - 12²) / (56² - 16²) = (44 - 12)(44 + 12) / (56 - 16)(56 + 16) =
= (32*56) / (40*72) = 28/45,
4.
1 число - х,
2 число - (х-52),
х² - (х-52)² = 208,
х² - х² + 104х - 2704 = 208,
104х = 208 + 2704,
104х = 2912,
х = 28 - 1 число,
х-52 = 28 - 52 = -24 - 2 число
Поделитесь своими знаниями, ответьте на вопрос:
1039. Решите систему уравнений:6х + 3 = 5х – 4(5y + 4), 3(2x — Зу) — 6x = 8 – у;x + 3931.2) 321 — = 1, | бу – х = 5;1 x+y83х + у4x — У - 462x – бу3
6x+3=5x-4(5y+4);
3(2x-3y)-6x=8-y;
Раскрываем скобки по распределительному закону умножения.
6х+3=5х-20у-16;
6х-9у-6х=8-у;
Переносим члены уравнения с неизвестным в левую часть, а известные в правую часть при этом изменяем знак каждого члена на противоположный.
6х-5х+20у=-3-16;
6х-9у-6х+у=8;
Приводим подобные члены уравнения в обеих частях уравнения.
х+20у=-19;
-8у=8;
Находим переменную у во втором уравнении.
х+20у=-19;
у=8:(-8);
х+20у=-19;
у=-1;
Подставляем значение переменной у в первое уравнение.
х+20*(-1)=-19;
х-20=-19;
х=-19+20;
х=1;
ответ: (1;-1).
Объяснение: