Объяснение:
x-2 x-3
2-4 3
y = 7x - 6sinx + 8
y' = 7 - 6cosx
7 - 6cosx = 0
6cosx = 7
cosx = 7/6, 7/6 больше 1, поэтому корней нет
Раз критических точек нет, то подставляем только границы промежутка:
y(-π/2) = 7*(-π/2) - 6sin(-π/2) + 8 = -7π/2 + 6 + 8 = -7π/2 + 14 = (28-7π)/2
y(0) = 7*0 + sin0 + 8 = 8
Сравним 8 и (28-7π)/2, чтобы определить наибольшее значение:
8 - (28-7π)/2 = (16 - 28 + 7π)/2 = (7π - 12)/2 ≈ (21 - 12)/2 = 9/2 > 0
8 - (28-7π)/2 > 0
8 > (28-7π)/2
ответ: наибольшее значение функции y = 7x - 6sinx + 8 на отрезке [-π/2; 0] равно 8
1. S(км) V(км/ч) t(ч)
По течению 45 v+2 45/v+2
Против течения 45 v-2 45/v-2
Пусть v - собственная скорость лодки.
(45/v+2)+(45/v-2 )=14
Домножим 1 скобку на (v-2) 2 на (v+2), 14 на (v+2)(v-2)
((45v-90+45v+90)-(14*(v-2)(v+2)))/(v-2)(v+2)=0
-14v^2+90v+56=0 (v-2)(v+2)не=0
Разделим обе части на -2 vне=2; vне=-2
7v^2-45v-28=0
D=(-45)^2-4*7*(-28)=2809.
v1=(45+53)/14=7.
v2=(45-53)/14=-8/14
Т.к. скорость не может быть отрицательной, следовательно собственная скорость лодки равна 7 км/ч.
---
3. 1катет=х(см)
2катет=х+31(см)
гипотенуза=41(см)
По теореме Пифагора:
х^2+(x+31)^2=41^2
x^2+x^2+62x+961=1681
2x^2+62x-720=0
Разделим на 2:
x^2+31x-360=0
D=31^2-4*1*(-360)=2401.
x1=(-31+49)/2=9.
X2=(-31-49)/2=-40
Т.к. длина не может быть отрицательной, следовательно длина 1катета равна 9(см).
Длина 2катета=х+31
31+9=40(см)
1катет=9см, 2катет=40см.
Поделитесь своими знаниями, ответьте на вопрос:
Алгебра седьмой класс Представьте в виде дроби выражение x - 2/2-4-х-3/3
там я его Хотел решить тоже