gigbes
?>

Неравенство (x-a)(2x-5)(x+b)>0 имеет решение(1; 2 1/2)∪(7;+∞ Найдите значения a и b.

Алгебра

Ответы

alexfold

(x-a)(2x-5)(x+b)=0  x=a    2x-5=0   x+b=0

Объяснение:                 x=5/2       x=b

                                        x=2,5  

ab2,5

(a;b) ∪ (2,5;∞)
Сергеевна-С.А.1549

В случайном порядке было отобрано 25 студентов экономического факультета и выписан их возраст:

19 17 22 18 17

17 23 21 18 19

17 22 18 18 18

20 17 19 21 17

21 17 18 23 18

Составить статистическое распределение студентов по возрасту. Построить полигон и кумуляту. Найти эмпирическую функцию распределения и дать ее графическое изображение.

Решение. 1. По исходным данным составим статистическое распределение выборки.

Таблица 1.1.

xi        

mi        

2. Вычислим относительные частоты, и результаты вычислений внесем в третий столбец таблицы 1.2. Относительные частоты находим по формуле

=  .

В данном случае объем выборки n=25. Относительные частоты:  =7/25=0,28;  = 0,28;  = 3/25=0,12;  = 1/25=0,04;  = 3/25=0,12;  =  =2/25=0,08.

=0,28 + 0,28 + 0,12 + 0,04 + 0,12 + 0,08 + 0,08 = 1.

3. Вычислим накопленные частоты и результаты внесем в четвертый столбец таблицы 1.2.

mx1= m1=7; mx2= m1 + m2=7 + 7=14; mx3= m1 + m2 + m3 =7 + 7 +3=17; mx4= m1 + m2 + m3 + m4=7 + 7 + 3 + 1=18; mx5=7 + 7 + 3 + 1 + 3 = 21; mx6=21 + 2 = 23; mx7= 25.

Вычисленные относительные накопленные частоты указаны в пятом столбце таблицы 1.2.

Таблица 1.2.

варианты xi частоты mi относительные частоты,  накопленные частоты, mxi относительные накопленные частоты

0,28  0,28

0,28  0,56

0,12  0,68

0,04  0,72

0,12  0,84

0,08  0,92

0,08  

4. Для построения полигона распределения отложим на оси абсцисс варианты xi , на оси ординат – частоты mi.

Рис. 1.1.

Для построения кумуляты отложим на оси абсцисс варианты xi, на оси ординат – накопленные частоты.

Рис. 1.2.

5. Найдем эмпирическую функцию F*(x) по данному распределению выборки.

Объем выборки n=25.

Наименьшая варианта х1=17, следовательно F*(x)=0, при х≤17. Значение х<18, а именно х1=17 наблюдалось 7 раз, следовательно F*(x)=7/25=0,28, при 17<х≤18. Значения х<19, а именно х1=17, х1=18 наблюдались 7+7=14 раз, следовательно F*(x)=14/25=0,56, при 18<х≤19. Аналогично, F*(x)=17/25=0,68 при 19<х≤20; F*(x)=18/25=0,72, при 20<х≤21; F*(x)=21/25=0,84, при 21<х≤22; F*(x)=23/25=0,92, при 22<х≤23. Так как х7=23 – наибольшая варианта, следовательно F*(x)=1, при х >23.

Эмпирическая функция имеет вид

F*(x)=  

Построим график этой функции

Рис. 1.3.

Пример 2. Наблюдения за жирностью молока у 50 коров дали следующие результаты (в %).

3,86 3,84 3,69 4,00 3,81 3,73 4,14 3,76

4,06 3,94 3,76 3,46 4,02 3,52 3,72

3,67 3,98 3,71 4,08 4,17 3,89 4,33

3,97 3,57 3,94 3,88 3,72 3,92 3,82

3,61 3,87 3,82 4,01 4,09 4,18 4,03

3,96 4,07 4,16 3,93 3,78 4,26 3,26

4,04 3,99 3,76 3,71 4,02 4,03 3,91

По этим данным построить интервальный вариационный ряд с равными интервалами и изобразить его графически (построить полигон, гистограмму, кумуляту).

Решение. 1. Выполним разбиение данного ряда на интервалы,

n=50, xmax=4,33; xmin=3,46.

Число интервалов к=1 + 3,322lg50=1 + 3,322·1,7=6,6474≈7;

длина каждого интервала h=  

за начало первого интервала примем величину хнач=хmin – 0,5h=3,46 – 0,5·0,14=3,46 – 0,07≈3,4.

Таблица 1.3.

жирность молока, интервал середина интервала, хi частота,   mi относительная частота,  накопленная частота, mxi относительная накопленная частота  

3,40- 3,54 3,47  2/50=0,04  0,04

3,54-3,68 3,61  4/50=0,08 6 (2+4) 0,12

3,68-3,82 3,75  13/50=0,26 19 (6+13) 0,38

3,82-3,96 3,89  11/50=0,22 30 (19+11) 0,60

3,96-4,10 4,03  14/50=0,28 44 (30+14) 0,88

4,10-4,24 4,17  4/50=0,08 48 (44+4) 0,96

4,24-4,38 4,31  2/50=0,04 50 (48+2)  

2. Для построения гистограммы откладываем на оси абсцисс интервалы длинной h=0,14. На этих интервалах построим прямоугольники высотой, пропорциональной частоте. Для построения полигона середины верхних оснований соединим ломаной линией.

Рис. 1.4.

Для построения кумуляты на оси абсцисс отложим середины интервалов, а на оси ординат – накопленные частоты.

Рис. 1.5.

Объяснение:

Plamia7917

Мода= это наиболее часто встречаемая цифра. Легче всего моду находить путем составления вариационного ряда, т.е. записать цифры по возрастанию с повторениями. В твоём случае, мода= 7.. Медиана= это середина твоего ряда, у тебя всего 12 чисел, формула такова = складываешь шестое и седьмое числа и делишь их на 2. В твоем случае (0+7)/2= 3,5. Медиана=3,5. Среднее значение вычисляется по такому правилу= Сумму всех цифр делим на количество цифр. Сумма=4+5+3+2+1+0+7+2+7+2+7+8= 48. Объём выборки= 12. Следовательно 48/12=4. Удачи))

Объяснение:

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Неравенство (x-a)(2x-5)(x+b)>0 имеет решение(1; 2 1/2)∪(7;+∞ Найдите значения a и b.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Dom540703174
hrviko
silicon-films3375
Kornilova
VladimirovichKazakova1202
la-ronde737
kristi-a-90
koptevan6
nevori
a96849926288
Нана_Елена
gbnn90
pifpaf85
stailwomen31
natalia-bokareva