Позвольте m и n быть положительные целые числа, удовлетворяющие условиям1) НОД ( m+n ; 210) = 1;2) m^m это кратное n^n3) m не кратно nНайдите наименьшее возможное значение + ?
Рассмотрим два крайних случая, чтобы доказать, что количество ребят не зависит от распределения 16 юношей по двум классам. 1) Пусть все 16 юношей в классе А, а в классе Б юношей нет. Тогда девушек в 10 А столько же, сколько юношей в 10 Б, то есть 0. Значит, в классе А 16 юношей, а в классе Б 24 девушки. Всего 40 ребят.
2) Пусть все 16 юношей в классе Б, и там еще 24-16=8 девушек. В классе А юношей нет, а девушек столько же, сколько юношей в Б, то есть 16. Опять получается, что в классе А 16 ребят, а в Б 24, всего 40 ребят.
Позвольте m и n быть положительные целые числа, удовлетворяющие условиям1) НОД ( m+n ; 210) = 1;2) m^m это кратное n^n3) m не кратно nНайдите наименьшее возможное значение + ?
1) Пусть все 16 юношей в классе А, а в классе Б юношей нет.
Тогда девушек в 10 А столько же, сколько юношей в 10 Б, то есть 0.
Значит, в классе А 16 юношей, а в классе Б 24 девушки. Всего 40 ребят.
2) Пусть все 16 юношей в классе Б, и там еще 24-16=8 девушек. В классе А юношей нет, а девушек столько же, сколько юношей в Б, то есть 16.
Опять получается, что в классе А 16 ребят, а в Б 24, всего 40 ребят.
ответ 40