bb495
?>

Вычисление b1 и q, если b3=0, 024, S3=0, 504 в геометрической прогрессии (bn)

Алгебра

Ответы

krimenu5033
1) 3x + 2 > 1 для всех натуральных чисел - верно.
2) x^2 - 3x + 1 < 0 - да, решением является отрезок без концов (x1;x2)
3) Расстояние от точки A(x; y) до начала координат равно √(x^2 + y^2)
√(7^2 + 1^2) = √(49 + 1) = √50; √(5^2 + 5^2) = √(25 + 25) = √50.
Да, расстояние одинаковое.
4) Да, верно. Если произведение отрицательно, то эти числа разного знака.
5) Да, это верно.
6) Не знаю.
7) Да, это верно. Сумма углов трех треугольников 3*180° = 540°
Сумма углов пятиугольника 5*180° - 2*180° = 3*180° = 540°
8) Нет, неверно. Диагонали - оси только у квадрата и ромба.
9) Площадь тр-ника S = 1/2*x*y*sin (x,y) = 1/2*2a*2b*sin (2a,2b) = a*b
Отсюда sin (2a,2b) = 1/2. Да, угол между сторонами 2a и 2b равен 30°.
10) Не знаю.
11) (3+5+11)/3 = 19/3 < 7 - нет, неверно.
12) 1 < 1*√2; 2 > 1*√2 - да, верно.
13) Среднее геометрическое чисел 3 и а
√(3a) < 5; 3a < 25; a < 25/3; a < 8 1/3 - нет, неверно. Числа [8; 8 1/3) тоже.
14) 0,1a + 0,3*3a = 0,1a + 0,9a = a = 0,25*4a - да, верно.
15) Да, верно. Четное число может кончаться на 2 или на 4.
142, 412, 152, 512, 172, 712, 452, 542, 472, 742, 572, 752,
124, 214, 154, 514, 174, 714, 254, 524, 274, 724, 574, 754.
16) Четные делители 1000: 2, 4, 8, 10, 20, 40, 50, 100, 200, 250, 500, 1000.
Да, их ровно 12.
17) Нет, такое число будет иметь сумму цифр 3, то есть делиться на 3.
18) Кубы могут кончаться на 0, 1, 8, 7, 4, 5, 6, 3, 2, 9.
Квадраты могут кончаться на 0, 1, 4, 9, 6, 5, 6, 9, 4, 1.
Разность куба и квадрата одного и того же числа может кончаться на:
0, 0, 4, 8, 8, 0, 0, 4, 8, 8. Да, на 1 разность не может кончаться.
gresovanatalya
Решение
1)найти стационарные точки 
f(x)=x^4-200x^2+56
f`(x) = 4x³ - 400x 
4x³ - 400x = 0
4x*(x² - 100) = 0
4x = 0, x₁ = 0
x² - 100 = 0 
x² = 100
x₂ =  - 10
x₃ = 10
ответ:  x₁ = 0 ; x₂ =  - 10 ; x₃ = 10  - стационарные точки
2) определить интервалы возрастания функций
f(x)=x^3-x^2-x^5+23
1. Находим интервалы возрастания и убывания.
 Первая производная.
f'(x) = -5x⁴ + 3x² - 2x
или
f'(x) = x * (-5x³ + 3x - 2)
Находим нули функции.
 Для этого приравниваем производную к нулю
x * (-5x³ + 3x - 2) = 0
Откуда:
x₁ = - 1
x₂ = 0
(-1; 0)  f'(x) > 0 функция возрастает 
3) определить интервалы убывания функций 
f(x)=x^3-7,5x^2+1
1. Находим интервалы возрастания и убывания. Первая производная.
f'(x) = 3x² - 15x
или
f'(x) = x*(3x - 15)
Находим нули функции. Для этого приравниваем производную к нулю
x*(3x - 15) = 0
Откуда:
x₁ = 0
x₂ = 5
 (0; 5)  f'(x) < 0 функция убывает
 4) вычислить значение функции в точке максимума
f(x)=x^3-3^2-9x+1
Решение.
Находим первую производную функции:
y' = 3x² - 9
Приравниваем ее к нулю:
3x² - 9 = 0
x² = 3
x₁ = - √3
x₂ = √3
Вычисляем значения функции 
f(- √3) = - 8 + 6√3 точка максимума
f(√3) = - 6√3 - 8 
fmax = - 8 + 6√3
ответ: fmax = - 8 + 6√3

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Вычисление b1 и q, если b3=0, 024, S3=0, 504 в геометрической прогрессии (bn)
Ваше имя (никнейм)*
Email*
Комментарий*