Пусть х1 и х2 - любые действительные числа (из множества R), удовлетворяющие единственному условию х2 > х1
Тогда функция y = f(x) называется:
- убывающей на R, если при этом: f(x2) < f(x1);
- возрастающей на R, если при этом: f(x2) > f(x1).
Объяснение:
Функция возрастающая - если большему аргументу отвечает большее значение фунцкции. Пусть у нас аргументы буду
По условию
1) Если мы умножим неравенство аргументов на -1, получится, что
Поскольку мы использовали те же значения функции (при данных значениях аргумента значения функций начальных и этих будет одинаково), то
Функция будет убывающей
2)
Поэтому функция возрастающая
Поделитесь своими знаниями, ответьте на вопрос:
Сколько решений имеет система уравнений: 1) y=x^2-6x+10 это под общей { x^2-4x+y^2-2y=20 2) xy=8 это под общей { y+1=x^2?
1661
Объяснение:
По условию на доске написаны составные числа
a₁, a₂, ..., aₓ,
где aₓ ≤ 1700 и НОД(a₁, a₂)=...=НОД(a₁, aₓ)=НОД(a₂, a₃)=...=
=НОД(a₂, aₓ)=...=НОД(aₓ₋₁, aₓ) = 11.
Как известно, любое составное число А можно представить в виде разложения на простые множители
где простые числа, неотрицательные целые числа.
Так как наибольший общий делитель (НОД) любых двух чисел равен 11, то разложение каждого числа содержит множитель pₓ = 11 и αₓ = 1, а остальные простые множители любой пары различны. Отсюда, первое число, которого написал Олег - это 11. Далее, последовательность можно представить в виде
11·2, 11·3, 11·5, 11·7, 11·11, ..., 11·pₐ.
Из 11·pₐ ≤ 1700 находим pₐ:
11·pₐ ≤ 1700
pₐ ≤ 1700:11
pₐ ≤ 154 6/11.
Наибольшее простое число удовлетворяющее последнее неравенство - это 151. Тогда 11·151= 1661.