bruise6
?>

10 класс, найти производную:​

Алгебра

Ответы

strannaya2018

1) \frac{3}{2}\sqrt{x}

2) \frac{3}{x^{2} }

3) 2+\frac{1}{x^{2} }

Объяснение:


10 класс, найти производную:​
ЮрьевичКарпова1564

23.12.20 :: 13:04:19 Выбор языка:

Russian

Добро Гость выберите Вход или Регистрация

В ПАТЕНТОВАНИИ СТАТЬИ И ПУБЛИКАЦИИ Научно-техническая библиотекаНаучно-техническая библиотека SciTecLibrary Правила форума

Отправить

Научно-технический форум SciTecLibrary › Точные науки и дисциплины › Дебаты по Теории Относительности Эйнштейна › Неинвариантность Уравнений Максвелла

(Модераторы: peregoudovd, kkdil, E-Eater)

‹ Предыдущая тема | Следующая тема ›

Страниц: 1 2 3 4 ... 6Послать Тему Печать

Неинвариантность Уравнений Максвелла (Прочитано 14867 раз)

meandr

Ветеран форума

***

Вне Форума

Сообщений: 3827

КОСМОполит

Re: Неинвариантность Уравнений Максвелла

ответ #50 - 21.02.17 :: 12:42:22 pop писал(а) 21.02.17 :: 10:15:30:

ответьте ещё раз. Если на опыте измерены величины, которые при подстановке в уравнение дают истинность уравнения, то какие могут быть "трактовки"?

Если в это же уравнение ввести коэффициент в одно из ненулевых слагаемых, то уравнение не останется истинным. И никакими "трактовками" это не исправить.

Отвечу еще раз - первый на этой странице и последний, если не поймете (что скорее всего).

1. В уравнении напряженности (9) п.600 Трактата, составленном для ОБЩЕГО случая движущейся системы, предусмотрен "составной" скалярный потенциал

$\psi+\psi'$

где $\psi$ - обычный статический "кулоновский" потенциал - "собственный" потенциал поля заряда

$\psi'=\vec v \vec A$ - конвективный кинетический потенциал.

...

В современных обозначениях уравнение напряженности (9) в Трактате Максвелла

$\vec E=-\nabla\varphi-\nabla(\vec v \vec A)-\frac{\partial \vec A}{\partial t}$.

Это уравнение не во всех случаях адекватно опытам.

Поэтому

2. В современной ортодоксально-релятивистской теории используется раннее эфирное уравнение напряженности БЕЗ явного разбиения скалярного потенциала на "собственный" и конвективный потенциалы

$\vec E=-\nabla\varphi-\frac{\partial \vec A}{\partial t}$,

хотя наличие такого разделения с конвективным потенциалом неявно подразумевается преобразованиями Лоренца для потенциалов

В таком виде уравнения становятся адекватными опытам - но только в релятивистской трактовке понятий пространства и времени.

3. В классическом представлении пространства и времени уравнение Трактата с наличием конвективного потенциала становится адекватным только с коэффициентом 1/2 и определении вмп А как импульса движущегося поля "собственного" потенциала $\vec A=\varphi \vec v/c^2$

alicia179
V - знак квадратного корня
V(5x+7) - V(x+4) =4x+3
ОДЗ:
{5x+7>=0
{x+4>=0

{5x>= -7
{x>= -4

{x>=-7/5
{x>= -4

Чтобы избавиться от рациональности, возведем все члены уравнения в квадрат, но для этого правая часть уравнения должна быть положительной: 4x+3>=0; x>= -3/4
У нас получилась следующая ОДЗ:
{x>= -7/5
{x>= -4
{x>= -3/4
Решением этой системы будет промежуток: [-3/4; + бесконечность)
Итак, возводим в квадрат:
(5x+7)^2 - (x+4)^2 = (4x+3)^2
25x^2+70x+49-x^2-8x-16=16x^2+24x+9
24x^2+62x+33= 16x^2+24x+9
24x^2+62x+33-16x^2-24x-9=0
8x^2+38x+24=0 |:2
4x^2+19x+12=0
D= 19^2-4*4*12=169
x1=(-19-13)/8=-4  - это посторонний корень, т.к. не входит в промежуток [-3/4; + беск.)
x2=(-19+13)/8= -3/4
Получается, что уравнение имеет один корень => k=1
Корень x=-3/4 принадлежит интервалу (-1;0), значит q=-3/4
Решим уравнение 5k+4q= 5*1+4*(-3/4)=5-3=2
ответ:2

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

10 класс, найти производную:​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

samirmajbubi
compm
linda3930
rsd737
Korneeva1856
zagadka27
pak1998378
ИринаАлександровна
Вычислите arcsin (-√2/2)-ctg (arccos√3\2 )+√3
gubernatorov00
teashop
arturnanda803
ПаршинАндрей1928
a1rwalk3r
hrim5736
Алексей424