Поделитесь своими знаниями, ответьте на вопрос:
1. Выясните, имеет ли решение система и сколько: {7х−у=13, 3у−21х=−39. 2. Решите систему уравнений сложения: {3х−у=7, 3у+4х=5. 3. Велосипедист ехал 3 ч по лесной дороге и 1 ч по шоссе, всего он проехал 55 км. Скорость его по шоссе была на 3 км/ч больше, чем скорость по лесной дороге. С какой скоростью велосипедист ехал по шоссе и с какой по лесной дороге? 4. Решите систему уравнений: {2(3х−у)−4=2х−2у, 5−(y−4х)=4х+16. 5. Решите графически систему уравнений: {y=7−x, x−y=1.
Давайте разберемся.
Пусть некоторое A - утверждение. Будем называть утверждением некоторое предположение, которое характеризуется либо как истинное и тогда утверждение равняется единице, либо как ложное и тогда утверждение равняется нулю.
В данном случае за утверждение принимается:
A - предположение, говорящее, что Первая буква гласная.
B - предположение, говорящее, что Последняя буква согласная.
Немного об операциях в т.н. алгебре логики (термин сложный и его нужно разъяснять отдельно, делается это в курсе т.н. "высшей алгебры").
Это сложение (известное также как объединение в теории множеств) и умножение (пересечение). Здесь их называют логическое "ИЛИ" (дизъюнкция) и логическое "И" (конъюнкция). Раз уж речь идет об алгебре, то, конечно, имеем также логическое "НЕ". По аналогии с теорией множеств, это дополнение к какому-то операнду (а суть унарная операция, интересная вещь).
Давайте запишем как нужно само выражение.
-A∧-B (вместо минусов нужно черточку над буквой).
Таблица истинности выглядит так:
В наименованиях столбцов пишите A и B и ваше выражение третьим.
Затем подставляете различные наборы значение A и B, A и B принимают только значения 0 и 1. Получаете соответственно 0 или 1.
"НЕ" - значит, утверждение обращается - было 1, стало 0, и наоборот.
"И" - дает 1 если оба операнда 1, иначе дает 0.
"ИЛИ" - дает 0 если оба операнда 0, иначе дает 1.
Вот и все. Заполняете и получаете нужное.