Объяснение:
Графиком функции является парабола;
множитель при х² меньше нуля - ветви вниз.
Область определения: значение функции (у) может быть определено для любого значения аргумента (х)
D(y) = R
Точки экстремума (точки, в которых производная обращается в 0 или не определена:
y' = (-x^2+4)' \\ y'=-2x +0 =-2x
Найдем значение х для у'=0
Для любого х > 0 у < 4
Для любого х < 0 у < 4
Точка (0;4) - точка максимума фунции.
Нижняя граница области значений функции отсутствует.
Следовательно, Область значений функции
E(y): y \in (- \inf ; 4]
Поделитесь своими знаниями, ответьте на вопрос:
По графику данной функции определи те значения x, при которых значения функции отрицательны, если a= 3. x∈( ;
Прикладемо косинець до лінійки однією
стороною кута і проведемо пряму а
вздовж іншої сторони цього кута.
2. Перемістимо косинець уздовж лінійки і
проведемо ще одну пряму в вздовж іншої
сторони того самого кута.
3. Побудовані прямі а і в є паралельними.
Объяснение:
Прикладемо косинець до лінійки однією
стороною кута і проведемо пряму а
вздовж іншої сторони цього кута.
2. Перемістимо косинець уздовж лінійки і
проведемо ще одну пряму в вздовж іншої
сторони того самого кута.
3. Побудовані прямі а і в є паралельними.