Итак, имеем две функции у= 4/х и у= х
Для каждой из них чертим табличку
у=х прямая, проходящая через точку (0;0), значит нужна еще одна точка, например, (2;2)
у=4/х - гипербола, нужно неск точек как положительных так и отрицательных но не х=0
х= 0,5 1 2 4 8 -0,5 -1 -2 -4 -8
у= 8 4 2 1 0,5 -8 -4 -2 -1 -0,5
Теперь по точкам строим два графика ( график второй функции состоит из двух частей) и смотрим точки пересечения графиков. Эти точки и пишем в ответ.
ответ: (2;2) и (-2;-2)
Подробнее - на -
Объяснение:
ВОТ ТАК
Поделитесь своими знаниями, ответьте на вопрос:
Доказать, что функция возрастает на промежутке , убывает на промежутках. Тема: «Возрастание и убывание функции.Экстремумы функции»
Умножим на (a - b)
(a - b)(a + b)(a² + b²)(a⁴ + b⁴)(a⁸+ b⁸)(a¹⁶ + b¹⁶) = (a³² - b³²)(a - b)
Воспользуемся формулой разности квадратов:
(a² - b²)(a² + b²)(a⁴ + b⁴)(a⁸+ b⁸)(a¹⁶ + b¹⁶) = (a³² - b³²)(a - b)
(a⁴ - b⁴)(a⁴ + b⁴)(a⁸+ b⁸)(a¹⁶ + b¹⁶) = (a³² - b³²)(a - b)
(a⁸ - b⁸)(a⁸+ b⁸)(a¹⁶ + b¹⁶) = (a³² - b³²)(a - b)
(a¹⁶ - b¹⁶)(a¹⁶ + b¹⁶) = (a³² - b³²)(a - b)
a³² - b³² = (a³² - b³²)(a - b) (1)
Из условия a = b + 1 получаем, что a - b = 1. Подставляем в равенство (1):
a³² - b³² = (a³² - b³²)·1
a³² - b³² = a³² - b³² - верное тождество