waspmoto6188
?>

Определите знак произведения (x–2)(x–3)(x+4) на промежутке (2;3)

Алгебра

Ответы

llipskaya

Определите знак произведения (x–2)(x–3)(x+4) на промежутке (2;3)

6<x+4 < 7  знак +

0 < x - 2 < 1 знак +

-1 < x - 3 < 0 знак -

+ * + * - = -

Минус    

catmos
Пусть A=(n+1,...,n+k), В=(m+1,...,m+k) - исходные наборы подряд идущих чисел. Пусть A' и B' - наборы чисел, которые получаются из А и В перестановкой элементов, причем после суммирования чисел, стоящих в одинаковых местах в A' и B', получается набор подряд идущих натуральных чисел S=(s+1,...,s+k).  Тогда сумма всех чисел в А и В должна равняться сумме чисел в S (т.к. эта сумма не зависит от перестановки элементов), т.е. nk+(k+1)k/2+mk+(k+1)k/2=sk+(k+1)k/2, откуда n+m+(k+1)/2=s. Значит k обязано быть нечетным.

Покажем, что при любом нечетном k можно так переставить числа в А и В, что получится требуемый S. Очевидно, что достаточно это сделать в случае когда n=m=0, т.е. A=B=(1,...,k) т.к. вычитание (или прибавление) к каждому элементу набора фиксированного числа n или m сохраняет "подряд идущесть" как в самих А и В, так и в S. В этом случае s=(k+1)/2.
Переставим элементы набора А следующим образом:
А'=(1,s+1, 2, s+2, 3, s+3, ... ,s-1,2s-1,s), т.е. на нечетных местах стоят числа 1,2,...,s, а на четных местах s+1, s+2,...,2s-1. Т.е. всего 2s-1=k штук.
Переставим элементы набора B следующим образом:
B'=(s,1, s+1, 2, s+2, 3, ... ,2s-2,s-1,2s-1), т.е. на нечетных местах стоят числа s,s+1,...,2s-1, а на четных местах 1, 2,...,s-1. Т.е. тоже всего 2s-1=k штук.
Cкладывая элементы на одинаковых местах в наборах А' и B', получим набор S=(s+1, s+2, s+3, s+4, ..., 3s-3, 3s-2, 3s-1), т.е. набор из последовательных чисел.
Например, для k=9, s=(9+1)/2=5,
A'=(1, 6, 2, 7,  3, 8,  4,   9,  5),
B'=(5, 1, 6, 2,  7, 3,  8,   4,  9),
S =(6, 7, 8, 9,10,11,12,13,14).
Таким образом, нужные k - все нечетные числа не превосходящие 2013, коих 2014/2=1007 штук.
Ivanova.i.bkrasheninnikov

Функция y=f(x) называется четной, если она удовлетворяет следующим двум условиям:

1. Область определения данной функции должна быть симметрична относительно точки О. То есть если некоторая точка a принадлежит области определения функции, то соответствующая точка -a тоже должна принадлежать области определения заданной функции.

2. Значение функции в точке х, принадлежащей области определения функции должно равняться значению функции в точке -х. То есть для любой точки х, из области определения функции должно выполняться следующее равенство f(x) = f(-x).


Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Определите знак произведения (x–2)(x–3)(x+4) на промежутке (2;3)
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

zodgener
shkola8gbr
kiravalter1998697
obar1
Vitalik6928
chetverikovalex3738
vovlyur
Алина Ракитин1730
oleonov
salesrawtogo
lenapopovich556510
pizzaverona
Мельникова
ab +1/4(a+d) 6a-b+3a=1;-2, b=-1;1​
tatianamatsimoh
grekova5