Объяснение:
Линейное уравнение – уравнение, сводящееся к виду ax+b=0, где a≠0,b – числа. Линейное уравнение всегда имеет единственное решение x=−ba. Квадратное уравнение – уравнение, сводящееся к виду ax2+bx+c=0, где a≠0,b,c – числа. Выражение D=b2−4ac называется дискриминантом квадратного уравнения. Квадратное уравнение может иметь не более двух корней: ∙ если D>0, то оно имеет два различных корня и x1=−b+D2aиx2=−b−D2a ∙ если D=0, то оно имеет один корень (иногда говорят, что два совпадающих) x1=x2=−b2a ∙ если D<0, то оно не имеет корней. ▸ Теорема Виета для квадратного уравнения: Если квадратное уравнение имеет неотрицательный дискриминант, то сумма корней уравнения x1+x2=−ba а произведение x1⋅x2=ca ▸ Если квадратное уравнение: ∼ имеет два корня x1 и x2, то ax2+bx+c=a(x−x1)(x−x2). ∼ имеет один корень x1 (иногда говорят, что два совпадающих), то ax2+bx+c=a(x−x1)2. ∼ не имеет корней, то квадратный трехчлен ax2+bc+c никогда не может быть равен нулю. Более того, он при всех x строго одного знака: либо положителен, либо отрицателен. ▸ Полезные формулы сокращенного умножения: x2−y2=(x−y)(x+y)(x+y)2=x2+2xy+y2(x−y)2=x2−2xy+y2 Ознакомиться с полной теорией
Поделитесь своими знаниями, ответьте на вопрос:
Дана арифметическая прогрессия: −16; −15; −14... Найди сумму её первых семнадцати членов.
1.
1) x^2+8x+15=0
Запиши у вигляді суми
x^2+5x+3x+15=0
Розклади вирази на множники
x×(x+5)+3(x+5)=0
Розклади вираз на множники
(x+5)×(x+3)=0
Розклади на можливі випадки
x+5=0
x+3=0
Розв'яжи рівняння
Відповідь: x1 = -5; x2= -3
(Далі робиш по такому же принципу)
2) 2x^2-3x+1=0
2x^2-x-2x+1=0
x×(2x-1)-(2x-1)=0
(2x-1)×(x-1)=0
2x-1=0
x-1=0
Відповідь: x1 = 0,5; x2=1
3) -3x^2+2x+1=0
3x^2-2x-1=0
3x^2+x-3x-1=0
x×(3x+1)-(3x+1)=0
(3x+1)×(x-1)=0
3x+1=0
x-1=0
Відповідь: x1= -1/3; x2= 1
4) x^4+5x^2-36=0
(t=x^2)
t^2+5t-36=0
t= -9
t=4
x^2= -9
x^2= 4
Відповідь: x1= -2; x2= 2
2.
1) x^2-2x-8
x^2+2x-4x-8
x×(x+2)-4(x+2)
(x+2)×(x-4)
2) 2x^2-5x+3
2x^2-2x-3x+3
2x×(x-1)-3(x-1)
(x-1)×(2x-3)
3.
1) x^2+8x-9/2x+18
x^2+9x-x-9/2(x+9)
x×(x+9)-(x+9)/2(x+9)
(x+9)×(x-1)/2(x+9)
x-1/2
2) x^2-2x-8/x^2-16
x^2+2x-4x-8/(x-4)×(x+4)
x×(x+2)-4(x+2)/(x-4)×(x+4)
(x+2)×(x-4)/(x-4)×(x+4)
x+2/x+4
4.
1) m^3+2m^2-8m/m^2+4m
m×(m^2+2m-8)/m×(m+4)
m×(m+4)-2(m+4)/m+4
(m+4)×(m-2)/m+4
m-2
Якщо m = -1, то:
-1-2= -3
Відповідь: -3