* * * * * * * * * * * * * * * * * * * *
ответ: 10) 5 ; 11) 3 ; 12) 4.
Объяснение:
10) x²+y²+2x+10y+10 ≤ 0 ; x+y+6 ≥ 0 x²+y²+2x+10x+10 ≤ 0 ; x+y+6 ≥ 0 ⇔
⇔(x+1)²+(y+5)² ≤ 4² ( круг с центром в точке (-1; -5) и радиусом R=4) ;
y ≥ -x -5 ( область не ниже прямой y = -x -5 , которая проходит через центр окружности (x+1)²+(y+5)² = 4² . Фигура будет полукруг площадь
которой будет S =πR²/2 = π*4²/2 = 8π . ответ : 5
11) S₁= a² =1² = 1 ; S₂ =√( (a/3)²+(2a/3)² ) = 5a²/9 = 5/9 ; ... ⇒ q = 5/9
S =S₁/(1-5/9) =9S₁/4 =9*1/4 = 2,25 . ответ : 3.
12) 4x³+11x²- 11x - 4= 0 ⇔ 4x³- 4 +11x²-11x = 0⇔ 4(x³- 1) +11x(x-1) = 0 ⇔
4(x- 1)(x² +x+1) +11x(x-1) = 0 ⇔ (x- 1)(4(x² +x+1) +11x) = 0⇔4(x- 1)(4x² +15x+4)
сумма корней будет: x₁ +x₂+x ₃ =x₁ +( x₂+x ₃) =1 +(-15/4) = -11/4 = -2,75 .
ответ : 4.
Поделитесь своими знаниями, ответьте на вопрос:
У одного учащегося есть 7 занимательных книг по математике а у другого 9 по художественной литературе Сколькими учащиеся могут обмениваться по одной книге . А )63 В )49 С)81 Д)126
Объяснение:
1.
а) так как коэффициент при x² равен 1, т.е. положителен, то ветви параболы направлены вверх.
б) выделяем полный квадрат: y=(x-7/2)²-25/4. Отсюда следует, что абсцисса вершина параболы x=7/2, а ордината y=-25/4. Поэтому вершина параболы имеет координаты (7/2; -25/4).
с) ось симметрии параболы - это прямая, проходящая через её вершину параллельно оси ОУ. Поэтому в данном случае ось симметрии имеет уравнение x=7/2.
d) решая уравнение x²-7*x+6=(x-7/2)²-25/4, находим x1=6, x2=1. Поэтому функция обращается в 0 в точках (1;0) и (6;0).
e) пусть x=0, тогда y=6, пусть x=7, тогда y=6. Таким образом, найдены две дополнительные точки: (0;6) и (7;6)
2.
а) f(3)=-3²+2*3+15=12, f(-5)=-(-5)²+2*(-5)+15=-20.
б) пусть x=k. Подставляя это значение в выражение для функции, приходим к уравнению 7=-k²+2*k+15, или k²-2*k-8=0. Оно имеет решения k1=4, k2=-2. Таким образом, график проходит через точки (-2;7) и (4;7).
3.
выделяя полный квадрат, запишем уравнение для v(t) в виде v(t)=9-(h-1)²
1) приравнивая v(t) к нулю, приходим к уравнению 9-(h-1)²=0. Решая его и учитывая, что h>0, находим максимальную глубину h=4 м.
2) из уравнения v(t)=9-(h-1)² следует, что наибольшее значение, равное 9 м/с, v(t) достигает при h=1 м.