y=1+x3, х∈(-∞;+∞) или D=(-∞;+∞)
y=, х∈(-∞;0)∪(0;+∞) или D=(-∞;0)∪(0;+∞)
, х∈(-∞;-7)∪(-7;+∞) или D=(-∞;-7)∪(-7;+∞)
Объяснение:
Область определения функции - откуда до куда твой график существует по оси Х.
а) y=1+x3 график прямой х∈(-∞;+∞)
б) y= график гиберболы х∈(-∞;0)∪(0;+∞)
Если функция имеет вид: то х∈(-∞;-7)∪(-7;+∞)
Знаменатель х+7 говорит о том, что асимптота сдвинута по оси х влево.
Можно записывать ответ по разному, два варианта записи ответа, необходимо выбрать 1:
y=1+x3, (1вариант) х∈(-∞;+∞) или (2 вариант) D=(-∞;+∞)
y=, (1вариант) х∈(-∞;0)∪(0;+∞) или (2 вариант) D=(-∞;0)∪(0;+∞)
, (1вариант) х∈(-∞;-7)∪(-7;+∞) или (2 вариант) D=(-∞;-7)∪(-7;+∞)
Если верна пропорция , то по основному свойству пропорции произведение крайних членов равно произведению средних членов:
Рассмотрим пропорцию . Проверим, равно ли произведение крайних и произведение средних членов:
Слагаемое взаимно уничтожается.
Это равенство верно, так как оно получено из исходной верной пропорции.
Рассмотрим пропорцию . Проверим, равно ли произведение крайних и произведение средних членов:
Слагаемое взаимно уничтожается.
Это равенство также верно, так как оно получено из исходной верной пропорции.
Поделитесь своими знаниями, ответьте на вопрос:
Доказать неравенства: 2) x2 - 6xy +10y2 - 4y + 7 > 0 при всех действительных значениях x и y;
Объяснение:) x² - 6xy +10y² - 4y + 7 > 0 при всех действительных значениях x и y. Док-во: x² - 6xy +10y² - 4y + 7 = x² - 6xy +9y² +у² - 4y + 4+3 = (x² - 6xy +9y²) + (у² -4y + 4)+3 = (х-3у)²+ (у-2)²+3>0 при любых х и у, т.к. (х-3у)²≥0 и (у-2)²≥0, чтд