ответ: y=3/4.
Объяснение:
Находим производную: y'=4^x*ln(4)-2^x*ln(2)=2*(2^x)²*ln(2)-2^x*ln(2)=2^x*ln(2)*[2*2^x-1]. Приравнивая её к нулю и учитывая, что 2^x*ln(2)≠0, получаем уравнение 2*2^x-1=2^(x+1)-1=0, или 2^(x+1)=1. Отсюда x+1=log₂1=0 и x=-1 - единственная критическая точка. Если x<-1, то y'<0; если x>-1, то y'>0. Значит, точка x=-1 является точкой минимума. Подставляя x=-1 в выражение для функции, находим y(-1)=4^(-1)-2^(-1)+1=3/4. А так как касательная в точке минимума параллельна оси абсцисс, то её уравнением является y=3/4.
Всего "троек" может быть 7, 14, 21 и 28.
Всего "четвёрок" может быть 5, 10, 15, 20, 25, 30.
Известно, что "троек" больше, чем четвёрок и пятёрок, значит, троек не может быть больше 21, а "четвёрок" не может быть больше 10 (в противном случае оценок будет больше 30).
Пусть x "пятёрок", y "четвёрок", z "двоек":
1) "троек" 7, тогда сумма оценок
7*3+5x+4y+2z = 90
5x+4y+2z = 69
Очевидно, что из слагаемых 2, 4 и 5 невозможно получить сумму 69.
2) "троек" 14, тогда сумма оценок
14*3+5x+4y+2z = 90
5x+4y+2z = 48
48 можно получить путём сложения цифр 2, 4 и 5.
Пусть "четвёрок" 5, тогда сумма оценок
5x+4*5+2z = 48
5x+2z = 28
То есть нужно разделить сумму 28 между (30-14-5) = 11 "двойками" и "пятёрками", или
Итого получаем:
"пятёрок" - 2
"четвёрок" - 5
"троек" - 14
"двоек" - 9
Поделитесь своими знаниями, ответьте на вопрос:
с решением хотя бы одного с решением хотя бы одного
1 задание.
1)Х= y-z в квадрате+2, z=_>0-найти Х
2)действие, у=х+z в квадрате-2, z=_>0-найти у
3)действие,х=у-z в квадрате +2,arg(z)< || с верху~ or z =0
4)действие,z=подкорни2+у-х, х<_у+2
Я только понила 1 задание.