Поскольку график данной функции проходит через точку М(3; -1/11), то имеем: -1/11 = 1/(-9 + 3а - 4); -1/11 = 1/(-13 + 3а); -13 + 3а = -11; 3а = 2; а = 2/3.
у = 1/(-х² + (2/3)х - 4)
Наименьшее значение этой функции совпадает с наибольшим значением функции f(x) = -х² + (2/3)х - 4 (наибольшим значением знаменателя), которое равно значению ординаты вершины прараболы f(x) = -х² + (2/3)х - 4.
х₀ = -b/(2a) = -(2/3)/(-2) = 1/3 - абсциса вершины, f(1/3) = -1/9 + 2/9 - 4 = -35/9 - ордината вершины.
Значит y = 1/(-35/9) = -9/35 - наименьшее значение данной функции.
ответ: -9/35.
Поделитесь своими знаниями, ответьте на вопрос:
Найдите значение числового выражения: 5 : 1 2/3 +7 : 1 3/4 (полное решение)
=√[(9+√2+4√7)/(4+4√14+14)]=√[(9√2+4√7)/(18+4√14)]=
=√[(9√2+4√7)/√2(9√2+4√7)]=√(1/√2)=
2. (12/(√15-3) - 28/(√15-1) + 1/(2-√3))*(6-√3)=33
1)12(√15+3)/(√15-3)(√15+3)-28(√15+1)/(√15-1)(√15+1)+(2+√3)/(2-√3)(2+√3)=12(√15+3)/(15-9)-28(√15+1)/(15-1)+(2+√3)/(4-3)=2(√15+3)-2(√15+1)+2+√3=2√15+6-2√15-2+2+√3=6+√3
2)(6+√3)(6-√3)=36-3=33
3. √(3-√5) *(√10-√2)*(√5+3)=√[(9-5)(√10-√2)]=√[4(√10-√2)=2
4. (1+ 2√2)/ √(3 + 2√2)=(1+2√2)/√(√2+1)²=(1+2√2)/(√2+1)=
=(1+2√2)(√2-1)/(√2+1)(√2-1)=(√2-2√2+4-1)/(2-1)=3-√2
5. √(11- 4√7) +√(16-6√7)=√(√7-2)²+√(3-√7)²=√7-2+3-√7=1