lsuvorova1987
?>

Разместите в порядке возрастания числа: 1; 1, 001; 1, 01; 1, 0001; 0, 1; 1, 0011; 1, 011; 1, 1; 1, 11.

Алгебра

Ответы

Артем Уберт

0.1, 1, 1.0001, 1.001, 1.0011, 1.01, 1.011, 1.1, 1.11,

FinKozhevnikov28

ответ:0.1, 1, 1.0001, 1.001, 1.0011, 1.01, 1.011, 1.1, 1.11,

Объяснение:чтобы не запутаться, уравняйте количество знаков после запятой, а потом уберете.

1,0000; 1,0010; 1,0100; 1,0001; 0,1; 1,0011; 1,0110; 1,1000; 1,1100.

0.1000, 1.0000, 1.0001, 1.0010, 1.0011, 1.0100, 1.0110, 1.1000, 1.1100, и после того, как уберете ненужные нули, в ответе получите

0.1, 1, 1.0001, 1.001, 1.0011, 1.01, 1.011, 1.1, 1.11,

andrey
Без графиков можно так. Если (x₀,y₀) - какое-нибудь решение и |x₀|≠|y₀|, то (-x₀,-y₀), (y₀,x₀), (-y₀,-x₀) - еще 3 различных решения. Значит, чтобы было 2 решения, должно быть x₀=y₀, либо x₀=-y₀.
1) Если x₀=y₀, то |x₀|=1/2=|y₀|, откуда а=1/2. Из неравенства
|x+y|≤|x|+|y|≤√(2(x²+y²)) верного для всех х,у при а=1/2 получаем
2-|x|-|у|≤|x|+|y|≤1, т.е. |x|+|y|=1. Подставляя это во второе уравнение системы, получим 4 точки, из которых подходят только две: (1/2;1/2) и (-1/2;-1/2). Т.е. при а=1/2 система действительно имеет только 2 решения. 
2) Если x₀=-y₀, то |x₀|=1=|y₀|, откуда а=2. Из неравенства
2|x|=|(x+y)+х+(-у)|≤|x+у|+|x|+|y|=2, следует что |x|≤1 и аналогично |y|≤1, а значит x²+y²=2 может быть только если |x|=1 и |y|=1. Из 4 точек подходят только две (-1;1) и (1;-1), значит при а=2 система тоже имеет только 2 решения. Итак, ответ: а∈{1/2; 2}.
igevskoemuseumkec

2) - 14,3

4) 2,5

6) 60,33

8) 21,14

10) 22,5

12) 122

14) 231,04

16) 41

18) 1000

20) 15

22) 7

Объяснение:

2) число -20 - отрицательное, оно больше числа 5,7. Так что будем отнимать от -20 5,7. -20 - 5,7 = - 14,3. ответ в этом примере получится отрицательный, так как -20 больше

4) Для того, чтобы поделить десятичные дроби, нужно перенести все запятые вправо так, чтобы мы делили на целое число. В данном случае, мы будем делить 187,5 на 75. 187 делить на 75 = 2 (целая часть). После целой части мы ставим запятую и делим 375 (остаток от деления) на 75. И получаем 5. ответ: 2,5

6) Складываем целые части дробей с целыми, а десятичные с десятичными. 54 + 5, А 7 + 63. Не забываем добавлять остатки от десятичных частей к целым. Получаем 60,33

8)Самое обыкновенное умножение. Можно решать столбиком. Каждое число друг под другом. Умножаем все числа друг на друга. Получаем 21,14

10) Переводим смешанную дробь 1 \frac{5}{14} в неправильную. (1 * 14) + 5  = \frac{19}{14}. Домножаем первую дробь на 2, чтобы получить общий знаменатель 14. Теперь решаем \frac{6}{14} + \frac{19}{14} = \frac{25}{14}. Умножаем на 12,6. Для удобства переведем 12,6 в неправильную дробь \frac{126}{10}. Числитель умножаем на числитель, а знаменатель на знаменатель. Получим \frac{3150}{140}. Делим числитель на знаменатель и получаем 22,5

12) Переводим смешанные дроби в скобках в неправильные. Получим \frac{32}{9} и \frac{22}{10}. Приводим их к общему знаменателю, равному 90. Для этого домножаем первую дробь на 10, а вторую на 9. Получим \frac{320}{90} и \frac{198}{90}. Отнимаем дроби друг от друга. Для этого отнимаем числитель 320 - 198. Получаем 122. \frac{122}{90} : \frac{1}{90}. Чтобы поделить первую дробь на вторую, вторую дробь нужно перевернуть. Получим \frac{122}{90} * 90. Сокращаем 90, получаем 122.

14) Чтобы не пришлось возводить оба больших числа в квадрат, вынесем степень за скобку (326-174)^{2}. Получаем 152^{2}. 152 умножаем на 152, получаем 23104. 23104 делим на 100, то есть переносим запятую на 2 числа (число нолей в 100) влево. Получаем 231,04

16) Переведем смешанную дробь 6\frac{4}{13}  в неправильную = \frac{82}{13}. Делим дроби друг на друга. Для этого перевернем вторую дробь. \frac{82}{13} * \frac{13}{2}.

Сокращаем 13. 82 делим на 2. Получаем 41.

18) Сократим 24,2 и 0,242. Поделим числа друг на друга. Получим 100.

Сократим 35,6 и 3,56. Получим 10. 10 * 100 = 1000

20) Умножим \sqrt{5} на каждое число в скобках. Получим \sqrt{5*20} + \sqrt{5*5}. \sqrt{100} + \sqrt{25}. Вынесем числа из под корня. Получаем 10 + 5 = 15

22) Возводим 4\sqrt{7} в квадрат. 4^{2} = 16 \sqrt{7}^2 = 7. 16 * 7 = 112. 112 делим на 16, получаем 7

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Разместите в порядке возрастания числа: 1; 1, 001; 1, 01; 1, 0001; 0, 1; 1, 0011; 1, 011; 1, 1; 1, 11.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

falileevas
svo1961
legezin
Кононова-БЕСКРОВНАЯ
ERodina1
ganul
AndreiFaikov1943
rudakovam198
info7
Nikolaevna1623
sancity997124
mrubleva42
evageniy79
yorestov
svetsalikowa