УМНОЖИМ ПЕРВОЕ УРАВНЕНИЕ НА (+5),А ВТОРОЕ УРАВНЕНИЕ УМНОЖИМ НА (+3)
-20Х+15У=15
27Х-15У=27
СКЛАДЫВАЕМ
7Х=42
Х=42\7
Х=6
ТОГДА
-4Х+3У=3
-4*6+3У=3
-24+3У=3
3У=3+24
3У=27
У=27\3
У=9
ответ (6,9)
Задание 2
3х+2у=2,
1/2х-3у=-1/2
ПРЕОБРАЗУЕМ
3х+2у=2
0,5х-3у=-0,5
2у=2-3х
у=2-3х\2
Подстановка
0,5х-3*(2-3х\2)=-0,5
0,5х-(6-9х\2)=-0,5
0,5х-6\2+9х\2=-0,5
0,5х-3+4,5х=-0,5
5х=-0,5+3
5х=2,5
х=2,5\5
х=0,5
ТОГДА
у=2-3х\2
у=2-3*0,5\2=2-1,5\2=0,5\2=0,25
ответ ---(0,5;0,25)
Задание 3
ГРАФИЧЕСКИ
А)2х-у=0
3х+2у=14
СОСТАВЛЯЕМ ТАБЛИЦУ ДЛЯ ПЕРВОГО УРАВНЕНИЯ
2Х-У=0
2Х=У
ТАБЛИЦА
Х=0
У=0
Х=1
У=2
Х=2
У=4
Х=3
У=6
СОСТАВЛЯЕМ ТАБЛИЦУ ДЛЯ ВТОРОГО УРАВНЕНИЯ
3Х+2У=14
ТАБЛИЦА
Х=0
У=7
Х=1
У=5,5
Х=2
У=4
Х=3
У=2,5
СТРОИМ В ОДНОЙ КООРДИНАТНОЙ СИСТЕМЕ ДВА ГРАФИКА,ГДЕ ОТВЕТОМ БУДЕТ ТОЧКА ПЕРЕСЕЧЕНИЯ ЭТИХ 2Х ПРЯМЫХ
ответ(2,4)
Б) 3х-6у=5,
х/6-у/3=1.
СОСТАВЛЯЕМ ТАБЛИЦУ ДЛЯ ПЕРВОГО УРАВНЕНИЯ
3Х-6У=5
ТАБЛИЦА
Х=0
У=-5\6
Х=1
У=1\3
Х=2
У=1\6
Х=3
У=2\3
СОСТАВЛЯЕМ ТАБЛИЦУ ДЛЯ ВТОРОГО УРАВНЕНИЯ
Х\6-У\3=1
Х-2У\6=1
Х-2У=6
ТАБЛИЦА
Х=0
У=-3
Х=1
У=-2,5
Х=2
У=-2
Х=3
У=-1,5
Данная система решений не имеет (так как нет точек пересечения на графике)
Задание 3
ПОДСТАНОВКИ
А)а) 12х-5у=7,
11х+3у=14.
3У=14-11Х
У=14-11Х\3
ПОДСТАНОВКА
12Х-5*(14-11Х\3)=7
12Х-(70-55Х\3)=7
36Х-70+55Х\3=7
91Х-70=21
91Х=21+70
91Х=91
Х=1
ТОГДА
У=14-11Х\3
У=14-11*1\3=3\3=1
ответ(1,1)
Б) 6х-9у=-11,
9х+3у=11.
3У=11-9Х
У=11-9Х\3
ТОГДА
6Х-9*(11-9Х\3)=-11
6Х-(99-81Х\3)=-11
18Х-99+81Х\3=-11
99Х-99\3=-11
99Х-99=-11*3
99Х=-33+99
99Х=66
Х=66\99=22\33
ТОГДА
У=11-9Х\3
У=11-9*22\33\3=11-6\3=5\3
ответ(22\33;5\3)
Объяснение:
zvanton
18.01.2021
566262737373747474774474777
Александра440
18.01.2021
У нас в итоге будет два числа: неизвестное (которое или которые станет/станут известным/и) и второе – разность изначально неизвестного и известного которая должна выражать дату (в каком-то неизвестном представлении).
Обозначим второе число (дата), как тогда неизвестное число должно выглядеть, как: и должно выполняться равенство: или, иначе говоря: ;
Запишем это в столбик:
Все цифровые разряды будем, как это и принято, нумеровать от нуля до пяти, тогда номер разряда будет соответствовать индексу искомой цифры в разностном числе. Из столбика видно, что:
где: – возможная добавочная единица, уходящая из первого и приходящая во второй разряд:
– возможная добавочная единица, уходящая из второго и приходящая в третий разряд:
– возможная добавочная единица, уходящая из третьего разряда в четвёртый:
После сложения уравнений системы, получаем:
;
Это возможно, только если и при ;
Отсюда следует, что: оба средних разряда при суммировании должны получать из предыдущего разряда добавочную единицу, причём второй разряд должен переполняться и иметь вычет десятки, а третий НЕ должен переполняться и не иметь вычета.
Тогда получим 6 возможных вариантов разностного числа:
Пятый разряд неизвестного числа должен быть больше пятого разряда разностного числа (верхней даты), а это значит, что нулевой разряд разного числа (верхней даты) должен быть больше неизвестного, стало быть, нулевой разряд при суммировании переполняется и даёт дополнительную единицу в первый разряд, а поскольку так как с этой цифры начинается разностное число.
Для того, чтобы второй разряд получал добавочную единицу, нужно чтобы первый разряд при суммировании переполнялся, что возможно только когда поскольку в первом разряде уже есть шестёрка и добавочная единица, получаемая из нулевого разряда.
Значит, две последних цифры разностного числа (верхней даты) могут быть только годом, поскольку .
Стало быть, дни месяца и месяц расположены в разрядах: .
Тогда остаётся три варианта разностного числа:
отсюда:
------------------
Рассмотрим первый вариант: здесь может играть роль апреля.
Сказано, что сумма всех цифр должна быть кратна трём, тогда:
;
Возможны только случаи:
;
;
;
;
;
Учитывая, что:
получаем разностные числа:
– дата 12/04/56 г. – дата 15/04/86 г. – дата 21/04/47 г. – дата 24/04/77 г. – дата 24/04/38 г.
------------------
Рассмотрим второй вариант: здесь может играть только роль числа месяца (дня).
Сказано, что сумма всех цифр должна быть кратна трём, тогда:
;
;
Возможен только один случай:
;
Учитывая, что:
получаем разностное число:
– дата 11/15/46 г.
продолжение >>>
svetlana-sharapova-762621
18.01.2021
Возьмем за S весь объем задания, а за х и у - скорость первого и второго штукатура соответственно тогда первый может выполнить задание за S/x часов, а второй за S/y. S/x +5=S/y S/(x+y)=6 надо найти S/x и S/y
S/y-S/x=5 S=6x+6y S/x =6+6y/x S/y=6+6x/y 6+6y/x-6-6x/y=5 обозначим y/x=z 6z-6/z=5 6z²-6=5z 6z²-5z-6=0 D=5²+4*6*6=169 √D=13 z₁=(5-13)/12=-8/12=-2/3 отбрасываем, так как z не может быть отрицательным z₂=(5+13)/12=-18/12=3/2=1,5 S/x =6+6y/x=6+6z=6+6*1,5=6+9=15 S/y=6+6x/y=6+6/z=6+6/1,5=6+4=10 ответ: 15 и 10 часов
Задание 1
СЛОЖЕНИЯ
А)2Х-3У=1
3Х+У=7
УМНОЖИМ ВТОРОЕ УРАВНЕНИЕ НА (+3)
2Х-3У=1
9Х+3У=21
СКЛАДЫВАЕМ
11Х=22
Х=22\11
Х=2
ТОГДА
2Х-3У=1
2*2-3У=1
4-3У=1
-3У=1-4
-3У=-3
У=1
ответ (2,1)
Б)5Х-2У=10
-0,5Х+2У=-1
СКЛАДЫВАЕМ
4,5Х=9
Х=9\4,5
Х=2
ТОГДА
5Х-2У=10
5*2-2У=10
10-2У=10
-2У=10-10
-2У=0
У=0
ответ(2,0)
В)-4Х+3У=3
9Х-5У=9
УМНОЖИМ ПЕРВОЕ УРАВНЕНИЕ НА (+5),А ВТОРОЕ УРАВНЕНИЕ УМНОЖИМ НА (+3)
-20Х+15У=15
27Х-15У=27
СКЛАДЫВАЕМ
7Х=42
Х=42\7
Х=6
ТОГДА
-4Х+3У=3
-4*6+3У=3
-24+3У=3
3У=3+24
3У=27
У=27\3
У=9
ответ (6,9)
Задание 2
3х+2у=2,
1/2х-3у=-1/2
ПРЕОБРАЗУЕМ
3х+2у=2
0,5х-3у=-0,5
2у=2-3х
у=2-3х\2
Подстановка
0,5х-3*(2-3х\2)=-0,5
0,5х-(6-9х\2)=-0,5
0,5х-6\2+9х\2=-0,5
0,5х-3+4,5х=-0,5
5х=-0,5+3
5х=2,5
х=2,5\5
х=0,5
ТОГДА
у=2-3х\2
у=2-3*0,5\2=2-1,5\2=0,5\2=0,25
ответ ---(0,5;0,25)
Задание 3
ГРАФИЧЕСКИ
А)2х-у=0
3х+2у=14
СОСТАВЛЯЕМ ТАБЛИЦУ ДЛЯ ПЕРВОГО УРАВНЕНИЯ
2Х-У=0
2Х=У
ТАБЛИЦА
Х=0
У=0
Х=1
У=2
Х=2
У=4
Х=3
У=6
СОСТАВЛЯЕМ ТАБЛИЦУ ДЛЯ ВТОРОГО УРАВНЕНИЯ
3Х+2У=14
ТАБЛИЦА
Х=0
У=7
Х=1
У=5,5
Х=2
У=4
Х=3
У=2,5
СТРОИМ В ОДНОЙ КООРДИНАТНОЙ СИСТЕМЕ ДВА ГРАФИКА,ГДЕ ОТВЕТОМ БУДЕТ ТОЧКА ПЕРЕСЕЧЕНИЯ ЭТИХ 2Х ПРЯМЫХ
ответ(2,4)
Б) 3х-6у=5,
х/6-у/3=1.
СОСТАВЛЯЕМ ТАБЛИЦУ ДЛЯ ПЕРВОГО УРАВНЕНИЯ
3Х-6У=5
ТАБЛИЦА
Х=0
У=-5\6
Х=1
У=1\3
Х=2
У=1\6
Х=3
У=2\3
СОСТАВЛЯЕМ ТАБЛИЦУ ДЛЯ ВТОРОГО УРАВНЕНИЯ
Х\6-У\3=1
Х-2У\6=1
Х-2У=6
ТАБЛИЦА
Х=0
У=-3
Х=1
У=-2,5
Х=2
У=-2
Х=3
У=-1,5
Данная система решений не имеет (так как нет точек пересечения на графике)
Задание 3
ПОДСТАНОВКИ
А)а) 12х-5у=7,
11х+3у=14.
3У=14-11Х
У=14-11Х\3
ПОДСТАНОВКА
12Х-5*(14-11Х\3)=7
12Х-(70-55Х\3)=7
36Х-70+55Х\3=7
91Х-70=21
91Х=21+70
91Х=91
Х=1
ТОГДА
У=14-11Х\3
У=14-11*1\3=3\3=1
ответ(1,1)
Б) 6х-9у=-11,
9х+3у=11.
3У=11-9Х
У=11-9Х\3
ТОГДА
6Х-9*(11-9Х\3)=-11
6Х-(99-81Х\3)=-11
18Х-99+81Х\3=-11
99Х-99\3=-11
99Х-99=-11*3
99Х=-33+99
99Х=66
Х=66\99=22\33
ТОГДА
У=11-9Х\3
У=11-9*22\33\3=11-6\3=5\3
ответ(22\33;5\3)
Объяснение: