Объяснение:
Задано число:
52*2*
Заметим, что
36 = 4*9, то есть число должно делиться и на 4, и на 9.
1)
Признак делимости на 4:
Число делится на 4, если его запись оканчивается двумя цифрами, образующими число, которое делится на 4 или его запись оканчивается двумя нулями.
Поскольку предпоследняя цифра не равна нулю, то остаются кандидаты:
20; 24 и 28.
2)
Признак делимости на 9:
Число делится на 9, если сумма цифр целого числа делится на 9.
Заметим, что сумма трех цифр нашего числа уже делится на 9:
5+2+2=9 - делится на девять.
Рассмотрим три последние цифры.
*2*
Заметим, что последняя цифра - четная (число должно делиться на 4).
Возможные комбинации:
020 (0+0=0)
128 (1+8=9)
326 (число 26 не делится на 4)
524 (5+4=9)
722 (число 22 не делится на 4)
920 (9+0=9)
Осталось 4 числа:
52020
52128
52524
52920
Поделитесь своими знаниями, ответьте на вопрос:
1.3. Ординатасы 2-ге тең және берілген теңдеудің графигіне тиісті болатын нүктенің абсциссасын табыңдар:1) у - |x - 2| - 2 - 0; 2) у - 3|x + 1| - 6 = 0;3) 2y +|x + 1| - 3 = 0; 4) - (x - 2)^ - 2 = 0;5) Зу - (х + 1)2 - 3 = 0; 6) ух - х2 + 8 = 0.
Выражение, стоящее в правой части равенства может принимать как полжительные значения, так и отрицательные значения и ноль. Всё зависит от числового значения а. По определению модуля числа
По теореме Виета при .
Поэтому .
Знаки квадратного трёхчлена: + + + (2) - - - (3) + + +
В этом случае получаем два решения (при x>12 и при х<12) .
А если , то решений уравнение не будет иметь,так как модуль не может принимать отрицательные значения. Это будет в случае .
ответ: уравнение имеет одно решение при а=2 и а=3;
уравнение имеет 2 решения при а∈(-∞,2)∪(3,+∞) ;
уравнение не имеет решений при а∈(2,3) .