Пусть начальная скорость была x км/ч. Сначала велосипедист проехал 15 км со скоростью x км/ч за 15/x часов. Затем скорость уменьшилась на 3 км/ч, то есть стала x-3 км/ч. Проехал с такой скоростью он 6 км в течение 6/(x-3) часов. В сумме вышло 1.5 часа. Тогда можно составить уравнение: 15/x + 6/(x-3) = 1.5 Умножим обе части на 2x(x-3) 30(x-3) + 12x = 3x(x-3) 10(x-3) + 4x = x(x-3) x^2 - 3x - 10x + 30 - 4x = 0 x^2 - 17x + 30 = 0 (x - 2)(x - 15) = 0 Получим два корня: x1 = 2 км/ч x2 = 15 км/ч Первый корень не подходит, так как величина x1 - 3 км/ч= -1 км/ч < 0. Второй подходит: x2 - 3 км/ч = 12 км/ч ответ: 15 км/ч, 12 км/ч.
1) a1=8.2, a2=6.6
d=a2-a1=6.6-8.2=-1.6
-15.8=a1+(n-1)d
-15.8=8.2+(n-1)*(-1.6)
(n-1)*(-1.6)=-24
n-1=15
n=16
2) a1=5-1=4, a2=10-1=9
d=a2-a1=9-4=5
a14=a1+13d=4+13*5=4+65=69
S=(a1+a14)/2 *14=(a1+a14)*7=(4+69)*7=73*7=511
3) a3=a1+2d=6 => 2a1+4d=12
a5=a1+4d=10
2a1+4d-a1-4d=12-10
a1=2
4) b1=8, b2=-4
q=b2/b1=-4/8=-0.5
b4=b1*q^3=8*(-0,125)=-1
5) b1=8, b2=-4
q=b2/b1=-0.5
1/32 = b1*q^(n-1)
1/32 = 8 *(-0.5)^(n-1)
(-0.5)^(n-1)=1/256
n-1 = 8
n = 9
6) b1=2^(1-3)=2^-2=0.25
b2=2^(2-3)=2^-1=0.5
q=b2/b1=0.5/0.25=2
S=b1 * (q^10-1)/(q-1) = 0.25 *(2^10-1)/(2-1) = 0.25* 1023 = 255.75