Против течения катер шел расстояние Х
А по течению Х+32
Х+Х+32=88
2Х=56
Х=28
Получается,что катер против течения за 2 часа 28 км
С какой скоростью шёл катер
28:2=14 километров в час
Сколько километров катер по течению
28+32=60
Теперь ответим на вопрос,если бы катеру не течение,то сколько км он бы за 3 часа
14•3=42,а на самом деле км
Найдём разницу
60-42=18 км
Значит благодаря течению катер на 18 км больше за 3 часа
Теперь узнаём скорость течения
18:3=6
Скорость катеру по течению была 20 километров в час
60:3=20 км/час или 14+6=20 км/час
ответ:Скорость течения реки 6 км/час
Скорость катера в стоячей воде 24 ем/час
Скорость катера по течению 20 км/час
Объяснение:
1.
Примем всю работу за 1.
Тогда 5*(Х+У) = 1 - первый вариант, а 4*(2*Х+0,5*У) = 1 - второй вариант, где
Х - количество работы первого рабочего
У - количество работы второго рабочего
Исходя из этого получаем
5*(Х+У) = 4*(2*Х+0,5*У)
5Х+5У = 8Х+2У
5У-2У = 8Х-5Х
3У = 3Х , из чего следует что Х=У ( рабочие работают одинаково)
Тогда
5*(Х+Х) = 1
10Х = 1
Х = 0,1
Соответственно всю работу один рабочий выполнит за 10 дней
2. a+b/a-b=8/1
a²-b²=128
a+b=8a-8b из этого ур-я выражаем b, b=7/9a и подставляем его во второе
a²-b²=128
a²-49/81a²=128
81a²-49a²=128·81
32a²=10368
a²=324
a1=-18, a2=18
b1=7/9·(-18)=-14
b2=7/9·18=14
ответ :(-18,-14) или (18,14)
Поделитесь своими знаниями, ответьте на вопрос:
Функция y = ax2 + 5a + 3 имеет наименьшее значение, равное 23. Найди a.
Объяснение:
В зависимости от знака коэффициента а ветви параболы могут быть направлены или вверх, или вниз.
при а > 0 ветви направлены вверх, а значит вершина параболы является точкой минимума функции
при а < 0 ветви направлены вниз, а значит вершина параболы является точкрй максимума
1) При а > 0 у(min) = y(x0), где х0 =
- \frac{ b}{2a}−
2a
b
максимума в этом случае нет
2) при а < 0 y(max) = y (x0). х0 находится аналогично. в этом случае минимума нет