Решение: Пусть a,b,c,d – данные последовательно записанные числа. Тогда по условию a+d=22 (1) b+c=20 (2) Из свойств арифметической и геометрической прогрессии имеем: a+c=2*b (3) c^2=b*d (4) Из (2) получим b=20-c (5). Сложив (1) и (2), получим a+b+c+d=22+20=42, использовав (3) и (5), получим
3*b+d=42, d=42-3*b=42-3*(20-c)=42-60+3*c=3*c-18,
то есть d=3*c-18 (6). Использовав (4), (5), (6), получим c^2=(20-c)*(3c-18). Решаем: c^2=60*c-360-3*c^2+18*c=-3c^2+78c-360. 4*c^2-78*c+360=02*c^2-39*c+180=0. d=39^2-4*2*180=81c1=(39-9)\(2*2)=30\4=15\2=7.5 c2=(39+9)\(2*2)=12 Из (1), (6) получим: а=22-d=22-(3*c-18)=40-3*c (7). Используя (5), (6), (7), получим: a1=40-3*7.5=17.5 a2=40-3*12=4b1=20-7.5=12.5 b2=20-12=8d1=3*7.5-18=4.5 d2=3*12-18=18 Таким образом получили две последовательности 17.5;12.5;7.5;4.5 и 4;8;12;18.
ответ: 17.5;12.5;7.5;4.5 или 4;8;12;18
Демидова Красноцветов
20.03.2022
S V t по теч 165 км (х + 4)км/ч 165/(х + 4) ч пр. теч 165 км (х - 4)км/ч 165/(х - 4) ч 165/(х + 4)+ 165/(х - 4) = 13 | ·(x - 4)( x + 4)≠0 165(x - 4) + 165( x +4) = 13( x² -16) 165 x - 660 +165 x +660 =13x² - 208 13x² - 330 x - 208 = 0 По чётному коэффициенту х = 26 и х = -8/13 (не подходит к условию задачи)
36/х=(-0,24)/0,6(крест накрест)
х=(36*0,6)/-0,24
х=-90