я тут уже решал подобную задачу столько раз, что не помню, когда был первый.
Точки пересечения биссектрис - это центры окружностей, касающихся левой (или правой) стороны и обеих оснований. Поэтому отрезок, соединяющий эти центры - ЧАСТЬ СРЕДНЕЙ ЛИНИИ :))). Далее, если бы эти центры совпадали, то длина средней линии была бы равна ПОЛУСУММЕ БОКОВЫХ СТОРОН, то есть 14. (в этом случае трапеция была бы "ОПИСАНА ВОКРУГ ОКРУЖНОСТИ", а у таких 4угольников суммы противоположных сторон равны). Поэтому ответ 21-14=7. :)))
(Именно на это расстояние как бы раздвинуты вписаные окружности - пояснение такое :))).
Еще вариант решения, по сути - такой же
Обе точки пересечения биссектрис лежат на одинаковом расстоянии от оснований, это - центры окружностей, касающихся оснований. Одна касается левого ребра 13, другая - правого 15. Если точки касаний делят верхнее основание на отрезки x, у, z, то сразу ясно, что z - искомое расстояние. И есть 3 соотношения.
z+x+y = b;
z+(13-x)+(15-y) = a;
(a + b)/2 = 21
Складываем и делим на 2.
z = 7
Еще вариант решения - проводим спецальную касательную к ЛЕВОЙ ОКРУЖНОСТИ (то есть - с центром в точке F), параллельную СD. Легко видеть, что окружность с центром в F вписана в трапецию с основаниями (13 - z) и (15 - z), где z - ИСКОМОЕ РАССТОЯНИЕ между центрами. Далее - см. начало :)))
Можно доказать несколькими По т. Фалеса: Если параллельные прямые отсекают на одной стороне угла равные отрезки, то они отсекают равные отрезки и на второй стороне угла.
Параллельные прямые DE и AC отсекают равные отрезки на стороне AB угла ABC, т.е. AD = DB. Значит на стороне BC они отсекают также равные отрезки BE = EC.
2) Из подобия треугольников. Так как DE ║ AC, то ΔABC подобен ΔDBE по двум углам: ∠B общий, ∠BDE = ∠BAC как соответствующие при DE ║ AC и секущей AB. Так как по условию AD = DB, то BD/AB = 1/2. Коэффициент подобия k = 1/2. ⇒ BE/BC = 1/2, ⇒ BC = 2*BE, тч. E является серединой отрезка ВС.
3) Проведем прямые BO ║AC и ON║AB.
DBON параллелограмм, так как его противолежащие стороны параллельны. ⇒ DB = EO. ADEN параллелограмм, так как его противолежащие стороны параллельны, так как AD=DB, то NE=EO.
ΔBEO = ΔNEC по второму признаку: ∠BEO = NEC вертикальные, ∠BOE = ∠ENC внутренние накрест лежащие при BO ║AC и секущей ON. OE = EN. Из равенства треугольников следует BE=EC. ( так доказывается т. Фалеса)
Поделитесь своими знаниями, ответьте на вопрос:
Используя рисунок ниже, изобразите множество решений системы неравенств {x^2 + y <3 x+2y≥-2
1)-2+х²+(-2)+y ≤ 3
2) 3+х+2 ≥ (-2)
Объяснение:
Используем метод интервалов, (+,-,+,-)
получаем:
1)
х²+у < 3, значит
х²=3, у=3
т.к нужно, чтобы 3 было больше, берём
любое число в графике, которое меньше, чем 3, к примеру - (-2)
-2+х²+(-2)+у
-2+х²+(-2)+у действительно меньше чем ≤ 3
Всё!
2)х+2≥(-2)
х=(-2), 2=(-2)
Тут находим при метода интервалов, число большее, чем (-2), к примеру возьмём 3
Получаем:
3+х+2 ≥ (-2)
Готово!