1. При p = 0 неравенство теряет главного члена:
px^2 + (2p + 1)x - (2 - p) < 0;
0 * x^2 + (2 * 0 + 1)x - (2 - 0) < 0;
x - 2 < 0;
x < 2;
x ∈ (-∞; 2).
Значение p = 0 не подходит, т. к. не все значения x являются корнями неравенства.
2. При p > 0 ветви параболы направлены вверх, следовательно, не все значения x являются корнями неравенства.
3. При p < 0 неравенство будет верно при всех значениях x, если дискриминант будет отрицательным:
D = b^2 - 4ac;
D = (2p + 1)^2 + 4p(2 - p);
D = 4p^2 + 4p + 4 + 8p - 4p^2;
D = 12p + 4;
D < 0;
12p + 4 < 0;
12p < -4;
p < -4/12;
p < -1/3;
p ∈ (-∞; -1/3).
ответ: при значениях p ∈ (-∞; -1/3).
Поделитесь своими знаниями, ответьте на вопрос:
«При каких значениях параметра p неравенство px2+(2p+1)x+(2+p)>0
1. При p = 0 неравенство теряет главного члена:
px^2 + (2p + 1)x - (2 - p) < 0;
0 * x^2 + (2 * 0 + 1)x - (2 - 0) < 0;
x - 2 < 0;
x < 2;
x ∈ (-∞; 2).
Значение p = 0 не подходит, т. к. не все значения x являются корнями неравенства.
2. При p > 0 ветви параболы направлены вверх, следовательно, не все значения x являются корнями неравенства.
3. При p < 0 неравенство будет верно при всех значениях x, если дискриминант будет отрицательным:
D = b^2 - 4ac;
D = (2p + 1)^2 + 4p(2 - p);
D = 4p^2 + 4p + 4 + 8p - 4p^2;
D = 12p + 4;
D < 0;
12p + 4 < 0;
12p < -4;
p < -4/12;
p < -1/3;
p ∈ (-∞; -1/3).
ответ: при значениях p ∈ (-∞; -1/3).