Maloletkina-marina2
?>

кто ришит первый и нормально решит

Алгебра

Ответы

yanagitsina
Хочусемдясетьбаллов
skryabinamaria
Пусть мы бросили кубик первый раз и выпало некое число от 1 до 6. Когда мы будем бросать кубик второй раз, то из 6 вариантов только в одном случае выпадет точно такое число очков, и в 5 случаях - отличное от первого. Отсюда, вероятность выпадения разного количества очков равно:

\frac{5}{6} \approx 0,83

Можно по-другому.
Всего различных вариантов выпадения очков при двух бросках кубика равно 6 × 6 = 36.
Подсчитаем число случаев, когда выпадет одинаковое количество очков: 1 и 1, 2 и 2, 3 и 3, 4 и 4, 5 и 5, 6 и 6 - всего 6 вариантов. Значит, вариантов различного числа очков на кубике после двух бросков равно 36 - 6 = 30. Считаем вероятность:

\frac{30}{36} \approx 0,83
sarycheva659
a^2x- 2a^2=49x+14a
\\\
a^2x-49x=2a^2+14a
\\\
(a^2-49)x=2a(a+7)
\\\
(a-7)(a+7)x=2a(a+7)
Рассмотрим три случая:
1) При а=7 получим:
(7-7)\cdot (7+7)\cdot x=2\cdot7\cdot(7+7)
\\\
0\cdot 14\cdot x=14\cdot14
\\\
0\cdot x=196
Получившееся уравнение не имеет решений.
2) При а=-7 получим:
(-7-7)\cdot (-7+7)\cdot x=2\cdot(-7)\cdot(-7+7) \\\ 
-14\cdot 0\cdot x=-14\cdot0 \\\ 0\cdot x=0
Получившееся уравнение имеет бесконечное множество корней.
3) Если а≠7 и а≠-7, то разделим левую и правую часть уравнения на (а+7)(а-7)
\dfrac{(a-7)(a+7)}{(a-7)(a+7)} \cdot x= \dfrac{2a(a+7)}{(a-7)(a+7)} 
\\\
x= \dfrac{2a}{a-7}
Именно в этом случае уравнение будет иметь один корень.
ответ: a\in(-\infty;-7)\cup(-7;7)\cup(7;+\infty)

x^2-(a^2-17a+83)x-21=0
Прежде чем рассматривать сумму корней докажем, что уравнение всегда будет иметь корни. Находим дискриминант:
D=(a^2-17a+83)^2-4\cdot1\cdot(-21)=(a^2-17a+83)^2+84
Сумма неотрицательного числа (квадрат) и положительного числа есть число положительное, значит дискриминант положительный и уравнение имеет два корня при любом значении а.
Сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком:
x_1+x_2=a^2-17a+83
Выражение f(a)=a^2-17a+83 представляет собой квадратичную функцию, графиком которой является парабола ветвями вверх. Наименьшее значение такой функции достигается в вершине, которую вычислим по формуле:
a_{min}=-\frac{B}{2A} =-\frac{-17}{2\cdot1} =8.5
Иначе можно было найти ответ приравняв к нулю первую производную функции:
(a^2-17a+83)'=0
\\\
2a-17=0
\\\
a_{min}= \frac{17}{2} =8.5
ответ: 8,5

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

кто ришит первый и нормально решит
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Pochkun-Oleg
Тимур
Екатерина1979
printlublino
konss2
igor8809337
FATAHOVAMAINA
Anatolevna1703
Valentina
Апраксин Владимир897
slavutich-plus2
Pastushenkoen
sn009
ПаршинАндрей1928
miyulcha8077