Пусть х см - ширина прямоугольника. Тогда, (х+4) см - длина прямоугольника. Составим уравнение:
Раскроем скобки и перенесем все в левую часть:
Решать уравнение будем по формуле корней для уравнения с четным вторым коэффициентом:
Поскольку сторона не может выражаться отрицательным числом, то первый корень не удовлетворяет условию задачи. Тогда:
- ширина прямоугольника
- длина прямоугольника
Составим выражения для периметра:
Находим периметр:
ответ: стороны прямоугольника 6 см и 10 см; периметр прямоугольника 32 см
adel25159
22.12.2022
1) x=0 или х⁴-13х²+36=0 D=169-144=25 x²=(13-5)/2=4 или х²=(13+5)/2=9 х=0 х=-2 х=2 х=3 х=-3
Теперь надо разобраться, удовлетворяют ли корни ОДЗ уравнения. А в условии непонятно, что под корнем. Если просто х, то х должно быть ≥0 тогда отрицательные корни надо отбросить. О т в е т. 0; 2; 3.
Второе так же х=0 или х²+2х-24=0 D=4+96=10 x²=(-2+10)/2=4 или х²=(-2-10)/2=-6 - нет решения х=-2 х=2 х=0; х=-2; х=2 О т в е т. 0; 2
Пусть х см - ширина прямоугольника. Тогда, (х+4) см - длина прямоугольника. Составим уравнение:
Раскроем скобки и перенесем все в левую часть:
Решать уравнение будем по формуле корней для уравнения с четным вторым коэффициентом:
Поскольку сторона не может выражаться отрицательным числом, то первый корень не удовлетворяет условию задачи. Тогда:
- ширина прямоугольника
- длина прямоугольника
Составим выражения для периметра:
Находим периметр:
ответ: стороны прямоугольника 6 см и 10 см; периметр прямоугольника 32 см