Объяснение:
Это задание в первую очередь ориентировано на проверку ваших знаний ФСУ или Формул Сокращённого Умножения.
Давайте просканируем пример на их наличие.
1. - Это разность квадратов, а именно квадрата числа с и числа 3. Возможно вы зададите резонный вопрос - а зачем нам это отслеживать. В работе с дробями важно уметь находить взаимосвязи между знаменателями.
раскладывается рак (с-3)(с+3)
2. - знаменатель второй дроби и является квадратом разности(смотрим по знаку перед вторым числом). Он раскладывается как (с-3)(с-3).
Что-то напоминает не так ли? Таким образом, с-3 это общий множитель обоих знаменателей. Значит нужно перемножит каждую дробь на оставшийся общий множитель другой дроби
Я специально оставила дробь полностью раскрытой, т.к. она нам ещё может понадобиться.
3. - аналогично пункту 2 квадрат разности. Раскладывается практически аналогично. Но т.к. от перемены мест слагаемых сумма не меняется это исправимо.
Дальше приведём получившуюся дробь и оставшуюся к общему знаменателю.
Поделитесь своими знаниями, ответьте на вопрос:
Найдите наибольшее целое число, меньшее числа з
Поскольку график данной функции проходит через точку М(3; -1/11), то имеем: -1/11 = 1/(-9 + 3а - 4); -1/11 = 1/(-13 + 3а); -13 + 3а = -11; 3а = 2; а = 2/3.
у = 1/(-х² + (2/3)х - 4)
Наименьшее значение этой функции совпадает с наибольшим значением функции f(x) = -х² + (2/3)х - 4 (наибольшим значением знаменателя), которое равно значению ординаты вершины прараболы f(x) = -х² + (2/3)х - 4.
х₀ = -b/(2a) = -(2/3)/(-2) = 1/3 - абсциса вершины, f(1/3) = -1/9 + 2/9 - 4 = -35/9 - ордината вершины.
Значит y = 1/(-35/9) = -9/35 - наименьшее значение данной функции.
ответ: -9/35.