С трех последовательных целых чисел одно обязательно делится на 2, а одно обязательно делится на 3, поэтому произведение обязательно делится на 2*3=6 (2 и 3 - взаимно простые числа)
Значит нам осталось показать, что число a^2(a-1)(a+1)(a^2+1) делится на 5. Если ни одно из чисел а, а-1, а+1 не делится на 5, то число а имеет вид 5b+2 или 5b+3, где b - некоторое целое число
(пояснение число а может иметь вид 5b, 5b+1, 5b+2, 5b+3, 5b+4 так как при делении на 5 возможные остатки 0,1,2,3,4 при первых трех вариантах одно из чисел делится на 5: а=5b, a+1=(5b+4)+1=5b+5=5(b+1), a-1=(5b+1)-1=5b)
Если a=5b+2, то a^2+1=(5b+2)^2+1=25b^2+20b+4+1=25b^2+20b+5=5(5b^2+10b+1) а значит делится на 5,
Если a=5b+3, то a^2+1=(5b+3)^2+1=25b^2+20b+9+1=25b^2+20b+10=5(5b^2+10b+2), а значит делится на5.
Таким образом утверждение верно. Доказано
я понимаю что тут много ,но это правильно ,как мне кажется)
gladkihvv
04.07.2021
Находим производные: f'(x)=3x^2-1, g'(x)=6x-4. Значение производной в точке касания определяет угловой коэффициент касательной в этой точке. Поскольку касательные параллельны, то производные можно приравнять (у касательных равны угловые коэффициенты), поэтому 3x^2-1=6x-4<=>3x^2-6x+3=0<=>x^2-2x+1=0=> =>x1=1,x2=1. f(1)=1^3-1-1=-1, g(1)=3*1^2-4*1+1=0. f'(1)=2, g'(1)=2. Составляем уравнения касательных: f(x)=>y+1=2(x-1), y=2x-3, g(x)=>y-0=2(x-1), y=2x-2. Ну, и для наглядности графики
a^6-a^2=a^2(a^4-1)=a^2(a^2-1)(a^2+1)=a^2(a-1)(a+1)(a^2+1)
С трех последовательных целых чисел одно обязательно делится на 2, а одно обязательно делится на 3, поэтому произведение обязательно делится на 2*3=6 (2 и 3 - взаимно простые числа)
Значит нам осталось показать, что число a^2(a-1)(a+1)(a^2+1) делится на 5. Если ни одно из чисел а, а-1, а+1 не делится на 5, то число а имеет вид 5b+2 или 5b+3, где b - некоторое целое число
(пояснение число а может иметь вид 5b, 5b+1, 5b+2, 5b+3, 5b+4 так как при делении на 5 возможные остатки 0,1,2,3,4 при первых трех вариантах одно из чисел делится на 5: а=5b, a+1=(5b+4)+1=5b+5=5(b+1), a-1=(5b+1)-1=5b)
Если a=5b+2, то a^2+1=(5b+2)^2+1=25b^2+20b+4+1=25b^2+20b+5=5(5b^2+10b+1) а значит делится на 5,
Если a=5b+3, то a^2+1=(5b+3)^2+1=25b^2+20b+9+1=25b^2+20b+10=5(5b^2+10b+2), а значит делится на5.
Таким образом утверждение верно. Доказано
я понимаю что тут много ,но это правильно ,как мне кажется)