ignashkinamasha
?>

Надо решить колонку где написано задание

Алгебра

Ответы

jakushkinn

решение на фотографиях


Надо решить колонку где написано задание
Надо решить колонку где написано задание
Надо решить колонку где написано задание
Надо решить колонку где написано задание
Надо решить колонку где написано задание
stendpost

(-6, -5 )

Объяснение:

P.S забыла скобку фигурную слева, там где x = -2y-16, -5y=25

Если коротко объяснить решения, то это метод подстановки. Выражаем одну переменную через другую и подставляем ее в другое уравнение. Ещё можно решать через графический метод, но это достаточно долго, можно было привести через метод алгебраического сложения:

{x+2y=-16,

{2x-y=-7; | Будем действовать через игрек. Умножаем уравнение на 2.

{x+2y=-16,

{4x-2y=-14;

Теперь там где фигурная скобка ( она должна быть большой, захватывать два уравнения ), мы ставим знак + и складываем уравнения.

{x+2y=-16,

{4x-2y=-14;

_________

(x+4x)+(2y+(-2y))=-16+(-14)

2y у нас уходят, получаем:

5x=-30, | 5

x=-6.

Возвращаемся к системе уравнений, не забывая переписать x.

{x=-6,

{-6+2y=-16;

{x=-6,

{2y=-16+6;

{x=-6,

{2y=-10; | 2

{x=-6,

{y=-5.

И, собственно, получим тот же ответ. Алгебраическое сложение можно использовать и с минусом. ( если бы у нас вышло, например, x+2y=-16 и 4x+2y=-14. Тогда бы все, что поменялось, так это сложение мы бы заменили вычитанием.


Система уровнений x+2y=-16 2x-y=-7
Korinchan390

Распишу, как я вижу эту задачу

Пусть масса золота будет g, серебра s

Отношение массы золота к массе серебра \displaystyle \frac{g_1}{s_1}=p1 для 1-го и 2-го сплава соответственно.

Выразим золото в обоих случаях, так как оно через умножение будет (это удобнее)

g_1=s_1\cdot p; \ g_2=s_2 \cdot q

Что такое масса сплава

m=g+s

Для конкретных сплавов это:

m_1 = g_1+s_1 = s_1\cdot p + s_1 =s_1(p+1) \\ m_2 = g_2 +s_2 = s_2\cdot q + s_2 = s_2(q+1)

Далее составляется новый сплав, который составляется из первого и второго сплава, но возьмутся части от каждого. Пусть эти доли будут равны r_1, r_2 для первого и второго сплава соответственно.

Общая масса нового сплава будет равна:

m_3 = r_1\cdot m_1 + r_2 \cdot m_2 = r_1\cdot s_1(p+1) + r_2 \cdot s_2(q+1)

Причем суммарная масса золота здесь будет  r_1\cdot s_1\cdot p+r_2 \cdot s_2 \cdot q

Первое слагаемое - масса золота в новом сплаве из первого сплава, второе слагаемое - масса золота в новом сплаве из второго сплава.

И вот тут применяем условие, что эти два слагаемых равны, то есть

\displaystyle r_1\cdot s_1 \cdot p = r_2 \cdot s_2 \cdot q \Rightarrow r_1 = r_2 \cdot \frac{s_2}{s_1}\cdot \frac{q}{p}

Вспомним, какие будут массы первого и второго сплава в новом сплаве и найдем их отношение.

\displaystyle m_1 = r_1\cdot s_1 \cdot (p+1) = r_2\cdot \frac{s_2}{s_1}\cdot \frac{q}{p}\cdot s_1(p+1)=\frac{r_2\cdot s_2\cdot q(p+1)}{p} \\ m_2=r_2\cdot s_2\cdot (q+1) \\ \frac{m_1}{m_2} = \frac{r_2\cdot s_2 \cdot q(p+1)}{p} : \frac{r_2\cdot s_2 \cdot (q+1)}{1} = \frac{r_2 \cdot s_2 \cdot q(p+1)\cdot 1}{p \cdot r_2 \cdot s_2 \cdot (q+1)} \\ \boxed{\frac{m_1}{m_2} = \frac{p+1}{p}\cdot \frac{q}{q+1} }

Из заданных p1 можно лишь сказать, что оба сомножителя будут больше единицы, так что и все произведение будет больше единицы, то есть масса первого сплава должна быть больше.

UPD. Дорешивал я уже задачу, где массы золота в новом сплаве равны (изначально недопонял условие)

Но нестрашно. Тоже полезно. Теперь дорешаем нашу задачу. В ней равны массы золота и серебра в новом сплаве.

Общая масса золота в новом сплаве это m_g = r_1\cdot s_1\cdot p+r_2 \cdot s_2 \cdot q

Общая масса серебра в новом сплаве это

m_s = r_1 \cdot s_1 + r_2 \cdot s_2

И известно, что эти массы равны. Логика та же: приравнять, выразить и подставить.

\displaystyle m_g = m_s \Rightarrow r_1 \cdot s_1 \cdot p + r_2 \cdot s_2 \cdot q = r_1\cdot s_1 + r_2 \cdot s_2 \Rightarrow \\ \Rightarrow r_1 \cdot s_1(p-1) = r_2 \cdot s_2(1-q) \Rightarrow r_1\cdot s_1 = \frac{r_2 \cdot s_2(1-q)}{(p-1)}

Замечательно. Только для удобства обозначим \dfrac{1-q}{p-1}=k

Вспоминаем, что

\displaystyle m_1 = r_1 \cdot s_1(p+1) = r_2\cdot s_2 \cdot k(p+1) \\ m_2 =r_2 \cdot s_2 \cdot (q+1) \Rightarrow \\ \Rightarrow \frac{m_1}{m_2} = \frac{r_2 \cdot s_2 \cdot k(p+1)}{r_2 \cdot s_2 \cdot (q+1)} = \frac{k(p+1)}{q+1} = \frac{(1-q)(p+1)}{(p-1)(q+1)}

А вот здесь как раз вполне можно использовать знание, что p1 и поменять знаки одновременно в скобках с вычитанием как в числителе, так и в знаменателе и тогда

\displaystyle \boxed{\frac{m_1}{m_2}=\frac{q-1}{q+1}\cdot \frac{1+p}{1-p} }

Как-то так.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Надо решить колонку где написано задание
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

nataliarogacheva
mirsanm26249
Deniskotvitsky6422
krisrespect
navi35374
rytikovabs
dksvetlydir
Gaziev1636
okabankova7
balabinatanya7174
marinaled8187
Кононова-БЕСКРОВНАЯ
Тинчурина1528
nikziam
missimeri