2.Треугольник ABC имеет стороны AB = 137; AC = 241 и BC = 200. На BC есть точка D, такая, что обе окружности, вписанные в треугольники ABD и ACD, касаются AD в одной точке E. Определите длину CD .
ответ: 152
Пошаговое объяснение:
рисунок приведен во вложении Обозначаем :
DT₁ = DE= DT₂ = y и BK₁ = BT₁ = x .
Используем часть известной теоремы (дальше простоя арифметика )
Отрезки касательных к окружности, проведенные из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности .
AК₂ = AE = AK₁ = AB - BK₁ = 137 - x ;
CT₂ = CK₂ =AC -AK₂ = 241 -(137 - x) = 104 + x .
- - - - - - -
BD + CD = BC BD = BT₁ + DT₁ =x + y ; CD= СT₂ +T₂D ) = 104+x+y
( x + y ) + (104 +x +y) = 200 ⇔ x + y = 48
CD =1 04+ x+y = 104+48 = 152 .
Объяснение:
barabanoveugeny
04.08.2022
6х^2-3x =0 вынесем общий множитель за скобки: 1) 3x(2x-1)=0 произведение двух множителей равно 0, если один из них или оба равны 0: 3х=0 или 2х-1=0 первый корень х=0 2х-1=0 2х=1 х=1/2 - второй корень. 2)25х^2=1 x^2=1/25 x=+- 5 3)4x^2+7x-2=0 вычислим дискриминант D=b^2-4ac D=49+32=81 x=(-7+-9)/8 x первое =-2, х второе х=2/8=1/4 4)4x^2+20x+1=0 D=400-16=384 x=(-20+-VD):8 V - обозначение квадратного корня 5) 3x^2 + 2x + 1 =0 D=4-12=-8<0 уравнение решений не имеет, т.к дискриминант отрицательный 6) х^2 + 2,5x -3=0 D= 2,5^2-4*1*(-3)=18,25 x=( -2,5+- VD):2 7) x^4 -13x^2 +36=0 введем обозначение x^2= t, получим новое уравнение t^2 -13t +36=0 D= 169+144=313 К сожалению, корень квадратный из дискриминанта не извлекается. Надо проверить правильность условия, потому что нам нужно решит уравнение х^2=t и найти х.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
решить эти примеры - 4/5х + 6(3-2/5х)=17 5(х + 2)=4(3 - Х) +7 с объяснением
1. Вычислить A = 2㏒₂㏒₃81+㏒₉√3
решение : 2㏒₂㏒₃81+㏒₉√3 =2㏒₂㏒₃3⁴ + (1/2)㏒₃√3 = 2㏒₂4 + (1/2)*(1/2) =2*2+0,25 = 4,25 .
* * * * * * * * * * * * * * * * * * * *
Не мешает
2.Треугольник ABC имеет стороны AB = 137; AC = 241 и BC = 200. На BC есть точка D, такая, что обе окружности, вписанные в треугольники ABD и ACD, касаются AD в одной точке E. Определите длину CD .
ответ: 152
Пошаговое объяснение:
рисунок приведен во вложении Обозначаем :
DT₁ = DE= DT₂ = y и BK₁ = BT₁ = x .
Используем часть известной теоремы (дальше простоя арифметика )
Отрезки касательных к окружности, проведенные из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности .
AК₂ = AE = AK₁ = AB - BK₁ = 137 - x ;
CT₂ = CK₂ =AC -AK₂ = 241 -(137 - x) = 104 + x .
- - - - - - -
BD + CD = BC BD = BT₁ + DT₁ =x + y ; CD= СT₂ +T₂D ) = 104+x+y
( x + y ) + (104 +x +y) = 200 ⇔ x + y = 48
CD =1 04+ x+y = 104+48 = 152 .
Объяснение: