Диана820
?>

Найти относительную погрешность числа 5, 134, если его приближенное значение равно 5, 2.

Алгебра

Ответы

Shteinbakh

y = 2x^3 - 3x^2 - 12x + 1 – это кубическая функция, проверим имеет ли она максимумы и минимумы, для этого найдем производную и приравняв у нулю, найдем промежутки возрастания и убывания. Если они имеются.

y = (2x^3 - 3x^2 - 12x + 1)’ = 6x^2 – 6x – 12;

6x^2 – 6x – 12 = 0;

x^2 – x – 2 = 0;

D = b^2 – 4ac;

D = (- 1)^2 – 4 * 1 * (- 2) = 1 + 8 = 9; √D = 3;

x = (- b ± √D)/(2a);

x1 = (1 + 3)/2 = 4/2 = 2;

x2 = (1 - 3)/2 = - 2/2 = - 1

Точки с абсциссами (- 1) и 2 – являются экстремумами, но ни одна из них не принадлежит промежутку [4; 5]. Значит наибольшее значение функции будет либо в точке 4, либо в точке 5.

y(4) = 2 * 4^3 – 3 * 4^2 – 12 * 4 + 1 = 128 – 48 – 48 + 1 = 129 – 96 = 33

y(5) = 2 * 5^3 – 3 * 5^2 – 12 * 5 + 1 = 250 – 75 – 60 + 1 = 251 – 135 = 116 – это наибольшее значение функции на интервале [4; 5].

ответ. max [4; 5] y = у(5) = 116.

test43

ответ:Уравнения в целых числах – это алгебраические уравнения с двумя или более неизвестными переменными и целыми коэффициентами. Решениями такого уравнения являются все целочисленные (иногда натуральные или рациональные) наборы значений неизвестных переменных, удовлетворяющих этому уравнению. Такие уравнения ещё называют диофантовыми, в честь древнегреческого математика Диофанта Александрийского, который исследовал некоторые типы таких уравнений ещё до нашей эры.

Современной постановкой диофантовых задач мы обязаны французскому математику Ферма. Именно он поставил перед европейскими математиками во о решении неопределённых уравнений только в целых числах. Наиболее известное уравнение в целых числах – великая теорема Ферма: уравнение

xn + yn = zn

не имеет ненулевых рациональных решений для всех натуральных n > 2.

Теоретический интерес к уравнениям в целых числах достаточно велик, так как эти уравнения тесно связаны со многими проблемами теории чисел.

В 1970 году ленинградский математик Юрий Владимирович Матиясевич доказал, что общего позволяющего за конечное число шагов решать в целых числах произвольные диофантовы уравнения, не существует и быть не может. Поэтому следует для разных типов уравнений выбирать собственные методы решения.

При решении уравнений в целых и натуральных числах можно условно выделить следующие методы перебора вариантов;

применение алгоритма Евклида;

представление чисел в виде непрерывных (цепных) дробей;

разложения на множители;

решение уравнений в целых числах как квадратных (или иных) относительно какой-либо переменной;

метод остатков;

метод бесконечного спуска.

Объяснение:

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найти относительную погрешность числа 5, 134, если его приближенное значение равно 5, 2.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

kulturarai44
mdsazonovatv1173
rada8080
melissa-80
Rizhov Alekyan325
sorokinae
Владимировна Екатерина
re-art
Ivanovich_Kostik898
rimmatrotskaia303
shhelina
okison2847
Герасимова107
Никита
bezzfamilny631