staskamolbio5152
?>

Сумма x6 6x 5 3 15x4 32 20x3 33 15x2 34 6x35 36 равна

Алгебра

Ответы

alexk13

ответ с онлайн мектеп.

.................................


Сумма x6 6x 5 3 15x4 32 20x3 33 15x2 34 6x35 36 равна
ortopediya

1) a= 2

2) a= -1

Объяснение:

Применим теорему Виета: если x₁ и x₂ корни уравнения x²+p·x+q=0, то

x₁ + x₂ = -p и x₁ · x₂ = q.

По условию, корни уравнения являются противоположными числами, то есть x₁ = -x₂, тогда x₁≠0 и x₂≠0 и:

-p = x₁ + x₂ = (-x₂) + x₂=0 и q = x₁ · x₂ = (-x₂) · x₂ = -x₂² <0.

Отсюда: p=0 и q<0.

1) Если дано x²+(a-2)·x+(a-6)=0, то по вышесказанному

p=a-2=0 ⇒ a=2 и q=a-6=2-6=-4<0. Тогда

x²+(2-6)=0 ⇔ x²=4 ⇔ x=±2.

2) Если дано x²+(a+1)·x+(a-8)=0, то по вышесказанному

p=a+1=0 ⇒ a= -1 и q=a-8=-1-8=-9<0. Тогда

x²+(-1-8)=0 ⇔ x²=9 ⇔ x=±3.

annaan-dr582

1) a= 2

2) a= -1

Объяснение:

Применим теорему Виета: если x₁ и x₂ корни уравнения x²+p·x+q=0, то

x₁ + x₂ = -p и x₁ · x₂ = q.

По условию, корни уравнения являются противоположными числами, то есть x₁ = -x₂, тогда x₁≠0 и x₂≠0 и:

-p = x₁ + x₂ = (-x₂) + x₂=0 и q = x₁ · x₂ = (-x₂) · x₂ = -x₂² <0.

Отсюда: p=0 и q<0.

1) Если дано x²+(a-2)·x+(a-6)=0, то по вышесказанному

p=a-2=0 ⇒ a=2 и q=a-6=2-6=-4<0. Тогда

x²+(2-6)=0 ⇔ x²=4 ⇔ x=±2.

2) Если дано x²+(a+1)·x+(a-8)=0, то по вышесказанному

p=a+1=0 ⇒ a= -1 и q=a-8=-1-8=-9<0. Тогда

x²+(-1-8)=0 ⇔ x²=9 ⇔ x=±3.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Сумма x6 6x 5 3 15x4 32 20x3 33 15x2 34 6x35 36 равна
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Ohokio198336
mashumi2170
Artak96993298
vitaliy
verakmves
coalajk
apetit3502
Усошина1059
mnn99
lebedev815
Alekseevich_Elena
mmihail146
zsa100
Anshel2018534
gaina6678