1)Для начала вспомним формулу дискриминанта:
2)Теперь разберемся с буквенными обозначениями в формуле а,b,c . Так a,b это коэффициенты ,стоящие перед переменными x, а с это последняя цифра без переменных,т.е:
ax^2+bx+с=0, где
a=1, так как перед икс в квадрате нету коэффициента, в этом случае он всегда равен 1;
b= 7, перед следующим икс стоит 7, это наш коэффициент b;
с=6, та самая цифра без переменных, типа икс.
3) Итак , разобрались , теперь Подставим в нашу формулу все наши данные:
D>0, значит уравнение имеет 2 корня:
ответ:x1=1;x2=-6
Поделитесь своими знаниями, ответьте на вопрос:
сделать Первые три задания первого варианта!
Формулировка и доказательство теоремы косинусов
Теорема косинусов является обобщением теоремы Пифагора для произвольного треугольника.
Формулировка теоремы косинусов
Для плоского треугольника со сторонами a,b,c и углом α, противолежащим стороне a, справедливо соотношение:
Теорема косинусов
Изображение для пояснения сути теоремы косинусов - квадрат стороны произвольного треугольника равен сумме квадратов двух других сторон минус удвоенное их произведение на косинус угла между ними
Квадрат одной стороны треугольника равен сумме квадратов двух других сторон за вычетом удвоенного их произведения, умноженного на косинус угла между ними
Полезные формулы теоремы косинусов:
Полезные формулы теоремы косинусов - сама теорема, нахождение косинуса угла по трем сторонам и нахождение самого угла по трем сторонам треугольника
Как видно из указанного выше, с теоремы косинусов можно найти не только сторону треугольника по двум сторонам и углу между ними, можно, зная размеры всех сторон треугольника, определить косинусы всех углов, а также вычислить величину любого угла треугольника. Вычисление любого угла треугольника по его сторонам является следствием преобразования формулы теоремы косинусов.
Доказательство теоремы косинусов
Теорема Косинусов
Рассмотрим произвольный треугольник ABC. Предположим, что нам известна величина стороны AC (она равна некому числу b), величина стороны AB (она равна некому числу c) и угол между этими сторонами, величина которого равна α. Найдем величину стороны BC (обозначив ее длину через переменную a)
Для доказательства теоремы косинусов проведем дополнительные построения. Из вершины C на сторону AB опустим высоту CD.
Найдем длину стороны AB. Как видно из рисунка, в результате дополнительного построения можно сказать, что
AB = AD + BD
Найдем длину отрезка AD. Исходя из того, что треугольник ADC является прямоугольным, нам известны длина его гипотенузы (b) и угол (α) то величину стороны AD можно найти из соотношения его сторон, пользуясь свойствами тригонометрических функций в прямоугольном треугольнике:
AD / AC = cos α
откуда
AD = AC cos α
AD = b cos α
Длину стороны BD найдем как разность AB и AD:
BD = AB - AD
BD = c − b cos α
Теперь запишем теорему Пифагора для двух прямоугольных треугольников ADC и BDC:
для треугольника BDC
CD2 + BD2 = BC2
для треугольника ADC
CD2 + AD2 = AC2
Обратим внимание на то, что оба треугольника имеют общую сторону - CD. Определим ее длину для каждого треугольника - вынесем ее значение в левую часть выражения, а остальное - в правую.
CD2 = BC2 - BD2
CD2 = AC2 - AD2
Поскольку левые части уравнений (квадрат стороны CD) равны, то приравняем правые части уравнений:
BC2 - BD2 = AC2 - AD2
Исходя из сделанных ранее вычислений, мы уже знаем что:
AD = b cos α
BD = c − b cos α
AC = b (по условию)
А значение стороны BC обозначим как a.
BC = a
(Именно его нам и нужно найти)
Получим:
BC2 - BD2 = AC2 - AD2
Заменим буквенные обозначения сторон на результаты наших вычислений
a2 - ( c − b cos α )2 = b2 - ( b cos α )2
перенесем неизвестное значение (а) на левую сторону, а остальные части уравнения - на правую
a2 = ( c − b cos α )2 + b2 - ( b cos α )2
раскроем скобки
a2 = b2 + c 2 - 2c b cos α + ( b cos α )2 - ( b cos α )2
получаем
a2 = b2 + c 2 - 2bc cos α
Теорема косинусов доказана.
Случай, когда один из углов при основании тупой (и высота падает на продолжение основания), полностью аналогичен рассмотренному.