(1;3)
Объяснение:
1) Метод алгебраического сложения
{х+у=4 умножаем на (-2)
2х-у=5
{-2х-2у=-8
2х-у=5
Складываем уравнения
-3у=-3 умножаем на (-1)
у=3/3
у=1
Подставляем значение в одно из уравнений
х+у=4
х+1=4
х=4-1
х=3
ответ: (1;3)
2) Метод Подстановки
{х+у=4
2х-у=5
{х=4-у
2х-у=5
Подставляем значение х первого уравнения, во второе
2х-у=8
2(4-у)-у=5
8-2у-у=5
8-3у=5
-3у=5-8
-3у=-3
у=3/3
у=1
Подставляем значение у в первое уравнение
х=4-у
х=4-1
х=3
ответ: (1;3)
3) Графический
{х+у=4
2х-у=5
Берём первое уравнение
х+у=4
Пусть х будет 0, тогда у будет равно
0+у=4
у=4
Первая координата нашей прямой (0;4)
Пусть у будет 0, тогда х будет...
х+0=4
х=4
Вторая координата нашей прямой
(4;0)
Строим прямую в прямоугольной координатной плоскости, с координатами
(0;4) (4;0)
Берём второе уравнение
2х-у=5
Пусть х будет 0, тогда у будет равно
2*0-у=5
-у=5
у=-5
Первая координата нашей прямой (0;-5)
Пусть у будет равно 0, тогда х будет...
2х-0=5
2х=5
х=5/2
х=2целых1/2
х=2,5
Вторая координата прямой (2,5;0)
Строим прямую, в прямоугольной координатной плоскости, с координатами (0;-5) (2,5;0)
Точкой пересечения двух прямых, будет решением для данной системы уравнений
Координаты пересечения двух прямых является (1;3)
ответ: (1;3)
Поделитесь своими знаниями, ответьте на вопрос:
5. Упростите выражение и запишите ответ в виде многочлена
Простыми преобразованиями эту задачу не решить, будем использовать арифметику остатков.
1-ое свойство, которое понадобится
То есть мы спокойно можем заменить каждое слагаемое сравнимым с ним по модулю m. То есть каждое слагаемое в нашей сумме будем рассматривать отдельно.
2-ое свойство, которое нам понадобится:
То есть довольно аналогичная вещь в произведении
На нашем примере все увидим
Находим остатки по модулю 31
Рассматриваем первое слагаемое. Просто двойка не годится, нам нужно найти ближайшее к 31 число, превосходящее его (иногда там в отрицательные числа залезаем, например,
, но сейчас это не нужно), нам повезло, это 32
Учитываем, что
, получаем
То есть остаток от деления первого слагаемое на 31 получился равным 10. Прекрасно, аналогично со вторым
Остаток 21, чудесно. Выполняем последний шаг.
То есть остаток от деления исходного числа на 31 равен 0, следовательно, исходное число делится на 31, что и требовалось доказать.